ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received October 8, 2013
Accepted November 21, 2013
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Utilization of solar energy for direct contact membrane distillation process: An experimental study for desalination of real seawater

Department of Chemical Engineering, Sunchon National University, 315, Maegok Dong, Suncheon, Chonnam 540-742, Korea
ismoon@sunchon.ac.kr
Korean Journal of Chemical Engineering, January 2014, 31(1), 155-161(7), 10.1007/s11814-013-0250-1
downloadDownload PDF

Abstract

Membrane distillation (MD), a non-isothermal membrane separation process, is based on the phenomenon that pure water in its vapor state can be extracted from aqueous solutions by passing vapor through a hydrophobic microporous membrane when a temperature difference is established across it. We used three commercially available hydrophobic microporous membranes (C02, C07 and C12; based on the pore size 0.2, 0.7 and 1.2 μm respectively) for desalination via direct contact MD (DCMD). The effects of operating parameters on permeation flux were studied. In addition, the desalination of seawater by solar assisted DCMD process was experimentally investigated. First, using solar power only short-term (one day), successful desalination of real seawater was achieved without temperature control under the following conditions: feed inlet temperature 65.0 ℃, permeate inlet temperature 25.0 ℃, and a flow rate of_x000D_ 2.5 L/min. The developed system also worked well in the long-term (150 days) for seawater desalination using both solar and electric power. Long-term test flux was reduced from 28.48 to only 26.50 L/m2hr, indicating system feasibility.

References

Ettouney HM, El-Dessouky HT, Faibish RS, Gowin PJ, Chem. Eng. Progr., 98, 32 (2002)
Kerr RA, Science, 281(5380), 1128 (1998)
Thomson M, Miranda MS, Infield D, Desalination., 153, 229 (2002)
Ortiz JM, Exposito E, Gallud F, Garcia-Garcia V, Montiel V, Aldaz A, J. Membr. Sci., 274(1-2), 138 (2006)
Banat F, Jwaied N, Desalination, 230(1-3), 27 (2008)
Koschikowski J, Wieghaus M, Rommel M, Ortin VS, Suarez BP, Rodriguez JRB, Desalination, 248(1-3), 125 (2009)
Fath HES, Desalination, 116(1), 45 (1998)
Mulder M, Basic principles of membrane technology, 2nd Ed., Kluwer Academic Publishers, Netherlands (1996)
Imdakm AO, Matsuura T, J. Membr. Sci., 262(1-2), 117 (2005)
Greenlee LF, Lawler DF, Freeman BD, Marrot B, Moulin P, Water Res., 43, 2317 (2009)
Calabro V, Jiao BL, Drioli E, Ind. Eng. Chem. Res., 33(7), 1803 (1994)
Cath TY, Adams VD, Childress AE, J. Membr. Sci., 228(1), 5 (2004)
Lawson KW, Lloyd DR, J. Membr. Sci., 124(1), 1 (1997)
Li B, Sirkar KK, Ind. Eng. Chem. Res., 43(17), 5300 (2004)
El-Bourawi MS, Ding Z, Ma R, Khayet M, J. Membr. Sci., 285(1-2), 4 (2006)
Banat FA, Simandl J, Sep. Sci. Technol., 33(2), 201 (1998)
Charcosset C, Desalination, 245(1-3), 214 (2009)
Burgoyne A, Vahdati MM, Sep. Sci. Technol., 35(8), 1257 (2000)
Alklaibi AM, Lior N, Desalination., 171, 111 (2004)
Zhu B, Kim JH, Na YH, Moon IS, Connor G, Maeda S, Morris G, Gray S, Duke M, Membranes., 3, 155 (2013)
Zhang J, Gray S, Li JD, Desalination., 323, 142 (2013)
Yoo CK, Kim DS, Cho JH, Choi SW, Lee IB, Korean J. Chem. Eng., 18(4), 408 (2001)
Hwang ST, Korean J. Chem. Eng., 28(1), 1 (2011)
Manickam M, Kwon TO, Kim JW, Duke M, Gray S, Moon IS, Desalination Water Treat., 13, 362 (2010)
He K, Hwang HJ, Moon IS, Korean J. Chem. Eng., 28(3), 770 (2011)
He K, Hwang HJ, Woo MW, Moon IS, J. Ind. Eng. Chem., 17(1), 41 (2011)
Hwang HJ, He K, Gray S, Zhang JH, Moon IS, J. Membr. Sci., 371(1-2), 90 (2011)
Curcio E, Drioli E, Sep. Purif. Rev., 34, 35 (2005)
Al-Obaidani S, Curcio E, Macedonio F, Di Profio G, Ai-Hinai H, Drioli E, J. Membr. Sci., 323(1), 85 (2008)
Gryta M, Tomaszewska M, J. Membr. Sci., 144(1-2), 211 (1998)
Kalogirou SA, Prog. Energy Combust. Sci., 30, 231 (2004)
Khayet M, Godino MP, Mengual JI, Int. J. Nuclear Desalination., 1, 30 (2003)
Martinez-Diez L, Florido-Diaz FJ, Vazquez-Gonzalez MI, Desalination, 126(1-3), 193 (1999)
Avlonitis SA, Kouroumbas K, Vlachakis N, Desalination, 157(1-3), 151 (2003)
Camacho LM, Dumee L, Zhang J, Li JD, Duke M, Gomez J, Gray S, Water., 5, 94 (2013)
Lawson KW, Lloyd DR, J. Membr. Sci., 124(1), 1 (1997)
Banat F, Jumah R, Garaibeh M, Renew. Energy., 25, 293 (2002)
Hogan PA, Sudjito FAG, Morrison GL, Desalination., 81, 81 (1991)
Chen TC, Ho CD, J. Membr. Sci., 358(1-2), 122 (2010)
Galvez JB, Garcia-Rodriguez L, Martin-Mateos I, Desalination, 246(1-3), 567 (2009)
Jonsson AS, Wimmerstedt R, Harrysson AC, Desalination., 56, 237 (1985)
Liu GL, Zhu C, Cheung CS, Leung CW, Heat Mass Transfer., 34, 329 (1998)
Abu Al-Rub FA, Banat F, Bani-Melhem K, Sep. Sci. Technol., 38(15), 3645 (2003)
Shirazi MMA, Kargari A, Javad M, Shirazi A, Desalination Water Treat., 49, 368 (2012)
Khayet M, Adv. Colloid Interface Sci., 164, 56 (2011)
Alklaibi AM, Lior N, Desalination., 171, 111 (2004)
Drioli E, Calabrd V, Wu Y, Pure Appl. Chem., 58, 1657 (1986)
Saffarini RB, Summers EK, Arafat HA, Lienhard JH, Desalination., 286, 332 (2012)
Kang JD, Heack KY, J. Korean Sol. Energy Soc., 27, 11 (2007)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로