ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received December 1, 2013
Accepted May 7, 2014
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Predictions of wet natural gases condensation rates via multi-component and multi-phase simulation of supersonic separators

Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
shahsavand@um.ac.ir
Korean Journal of Chemical Engineering, October 2014, 31(10), 1845-1858(14), 10.1007/s11814-014-0133-0
downloadDownload PDF

Abstract

Proper correction of water and heavy hydrocarbon dew points of sweet natural gases is essential from various technical and economical standpoints. Supersonic separators (3S) are proved to be capable of achieving these tasks with maximum reliability and minimal expenses. The majority of the previous articles have focused on the flow behavior of pure fluids across a 3S unit. Multicomponent fluid flow inside 3S accompanied with condensation phenomenon will drastically increase the complexity of the simulation process. We tackle this issue by considering a proper combination of fundamental governing equations and phase equilibrium calculations to predict various operating conditions and composition profiles across two multi-component and multi-phase 3S units. Various Iranian sweet gases are used as real case studies to demonstrate the importance of 3S unit practical applications. Simulation results clearly illustrate the effectiveness of 3S units for faithful dehydration of various natural gases, while successfully controlling its dew_x000D_ point, suitable for any practical applications. Conventional HYSYS simulation software is used to validate the simulation results.

References

Betting M, Epsom HD, World Oil Mag., 254, 197 (2007)
Karimi A, Abdi MA, Chem. Eng. Process., 48(1), 560 (2009)
Machado PB, Monteiro JGM, Medeiros JL, Epsom HD, Araujo OQF, J. Nat. Gas. Sci. Eng., 6, 43 (2012)
Okimoto F, Brouwer JM, World Oil Mag., 223, 89 (2002)
Alferov VI, Baguirov LA, Dmitriev L, Feygin V, Imaev S, Lace JR, Oil Gas J., 103, 53 (2005)
Schinkelshoek P, Epsom H, in Proc. GPA 87th Annual Convention, TX (2008)
Liu HW, Liu ZL, Feng YX, Gu KY, Yan TM, Chin. J. Chem. Eng., 13(1), 9 (2005)
Jassim E, Abdi MA, Muzychka Y, Pet. Sci. Technol., 26, 1757 (2008)
Jassim E, Abdi MA, Muzychka Y, Pet. Sci. Technol., 26, 1773 (2008)
Malyshkina MM, High Temp., 46, 69 (2008)
Malyshkina MM, High Temp., 48, 244 (2010)
Wen C, Cao XW, Yang Y, Chem. Eng. Process., 50(7), 644 (2011)
Wen C, Cao XW, Yang Y, Zhang J, Chem. Eng. Technol., 34(9), 1575 (2011)
Wen C, Cao XW, Yang Y, Li WL, Energy, 37(1), 195 (2012)
Wen C, Cao XW, Yang Y, Zhang J, Adv. Powder Technol., 23(2), 228 (2012)
Ghanbari Mazidi M, Shahsavand A, Vaziri BM, J. Pet. Technol., In press.
Bakhtart F, Mohammadi Tochai MT, Int. J. Heat Fluid Flow, 2, 5 (1980)
Guha A, Young JB, I Mech E Conf. Publ., 167 (1991)
Cinar G, Yilbas BS, Sunar H, Int. J. Multiph. Flow, 23(6), 1171 (1997)
White AJ, Hounslow MJ, Int. J. Heat Mass Transf., 43(11), 1873 (2000)
Dykas S, Task Q., 5, 519 (2001)
Gerber AG, Kermani M, Int. J. Heat Mass Transf., 47(10-11), 2217 (2004)
Mahpeykar MR, Teymourtash AR, Sci. Iran., Trans. B., 11, 269 (2004)
Yang Y, Shen Sh, Int. Commun. Heat Mass Transfer, 36, 902 (2009)
Dykas S, Wroblewski W, Int. J. Heat Mass Transfer, 53, 933 (2012)
Cinar G, Yilbas BS, Sunar H, Int. J. Multiph. Flow, 23(6), 1171 (1997)
Ma QF, Hu DP, Jiang JZ, Qiu ZH, Int. J. Comput. Fluid Dyn., 23, 221 (2009)
Ma QF, Hu DP, Jiang JZ, Qiu ZH, Int. J. Comput. Fluid Dyn., 24, 29 (2010)
Lingling B, Zhongliang L, Hengwei L, Wenming J, Ming Z, Jian Z, Sci. China Technol. Sci., 53, 435 (2010)
Shooshtari SHR, Shahsavand A, Sep. Purif. Technol., 116, 458 (2013)
Mohaghegh SD, J. Pet. Technol., 57, 8691 (2005)
Zendehboudi S, Ahmadi MA, Bahadori A, Shafiei A, Babadagli T, Can. J. Chem. Eng., 91(7), 1325 (2013)
Zahedi G, Fazlali AR, Hussein SM, Pazuki GR, Sheikhattar L, J. Pet. Sci. Eng., 68, 218 (2009)
Shahsavand A, Ahmadpour A, Comput. Chem. Eng., 29(10), 2134 (2005)
Shahsavand A, Chenar AP, J. Membr. Sci., 297(1-2), 59 (2007)
Vaziri BM, Shahsavand A, Rashidi H, Mazidi MG, in Proc. 13th Iranian National Chemical Engineering Cong. & 1st Int. Regional Chemical and Petroleum Engineering, Kermanshah, Iran (2010)
Kohl A, Nielsen R, Gas Purification. 5th Ed., Gulf Pub. Co., Houston, Texas (1997)
Ahmed TH, Hydrocarbon phase behavior, 1st Ed., Gulf Pub. Co., USA (1989)
Mccain WD, The properties of petroleum fluid, 2nd Ed., Pennwell Pub. Co., Tlsu, Oklahoma, USA (1990)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로