ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received February 14, 2014
Accepted July 1, 2014
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Development of electrolyte SAFT-HR equation of state for single electrolyte solutions

Thermodynamics Research Laboratory, School of Chemical Engineering, Iran University of Science and Technology, Tehran 16846-13114, Iran 1Research Institute of Petroleum Industries, Tehran 14665-1998, Iran
Korean Journal of Chemical Engineering, December 2014, 31(12), 2251-2260(10), 10.1007/s11814-014-0185-1
downloadDownload PDF

Abstract

The explicit version of the mean spherical approximation (MSA) is added to the SAFT-HR equation of state (EoS) to model aqueous alkali halide solutions. The proposed electrolyte equation of state (eEoS) has two parameters per each ion. Two methods are in common use for calculating ion parameters: ion-based and salt-based. In this work, the electrolyte parameters are obtained for 61 single electrolyte solutions using salt-based method. Using this approach, mean ionic activity coefficients of the 61 aqueous electrolyte systems were modeled with overall average absolute relative percent deviation (AAD%) of 3.91. Also, for testing the ability of the model in terms of ionic parameters, six salts (NaCl, NaBr, NaI, KCl, KBr and KI) were studied using ion-based method. The liquid densities, osmotic coefficients and salt mean ionic activity coefficients of 6 aqueous electrolyte solutions were modeled with overall AAD% of 0.68, 2.28 and 0.96, respectively.

References

Prausnitz J, Lichtenthaler R, de Azevedo E, Molecular thermodynamics of fluid-phase equilibria (3rd Ed.), Prentice Hall (1998)
Kontogeorgis GM, Folas GK, Thermodynamic models for industrial applications, John Wiley & Sons, Ltd. (2009)
Blum L, Mol. Phys., 30, 1529 (1975)
Blum L, J. Stat. Phys., 18, 451 (1978)
Tan SP, Adidharma H, Radosz M, Ind. Eng. Chem. Res., 47(21), 8063 (2008)
Haghtalab A, Mazloumi SH, Fluid Phase Equilib., 285(1-2), 96 (2009)
Chen CC, Evans LB, AIChE J., 32, 444 (1986)
Pitzer KS, Activity coefficients in electrolyte solutions, 2nd Ed., CRC Press (1991)
Haghtalab A, Vera JH, AIChE J., 34, 803 (1988)
Planche H, Renon H, The J. Phys. Chem., 85, 3924 (1981)
Myers JA, Sandler SI, Wood RH, Ind. Eng. Chem. Res., 41(13), 3282 (2002)
Clarke MA, Bishnoi PR, Fluid Phase Equilib., 220(1), 21 (2004)
Haghtalab A, Mazloumi SH, Fluid Phase Equilib., 280(1-2), 1 (2009)
Chapman WG, Gubbins KE, Jackson G, Radosz M, Fluid Phase Equilib., 52, 31 (1989)
Galindo A, Gil-Villegas A, Jackson G, Burgess AN, J. Phys. Chem. B, 103(46), 10272 (1999)
Gil-Villegas A, Galindo A, Jackson G, Mol. Phys., 99, 531 (2001)
Tan SP, Adidharma H, Radosz M, Ind. Eng. Chem. Res., 44(12), 4442 (2005)
Adidharma H, Radosz M, Ind. Eng. Chem. Res., 37(11), 4453 (1998)
Ji XY, Tan SP, Adidharma H, Radosz M, Ind. Eng. Chem. Res., 44(19), 7584 (2005)
Tan SP, Ji XY, Adidharma H, Radosz M, J. Phys. Chem. B, 110(33), 16694 (2006)
Ji XY, Tan SP, Adidharma H, Radosz M, J. Phys. Chem. B, 110(33), 16700 (2006)
Liu ZP, Wang WC, Li YG, Fluid Phase Equilib., 227(2), 147 (2005)
Chapman WG, Gubbins KE, Jackson G, Radosz M, Ind. Eng. Chem. Res., 29, 1709 (1990)
Behzadi B, Patel BH, Galindo A, Ghotbi C, Fluid Phase Equilib., 236(1-2), 241 (2005)
Zhao H, dos Ramos MC, McCabe C, J. Chem. Phys., 126 (2007)
Zhao H, McCabe C, J. Chem. Phys., 125 (2006)
Held C, Cameretti LF, Sadowski G, Fluid Phase Equilib., 270(1-2), 87 (2008)
Cameretti LF, Sadowski G, Mollerup JM, Ind. Eng. Chem. Res., 44(9), 3355 (2005)
Herzog S, Gross J, Arlt W, Fluid Phase Equilib., 297(1), 23 (2010)
Shahriari R, Dehghani MR, Behzadi B, Ind. Eng. Chem. Res., 51(30), 10274 (2012)
Huang SH, Radosz M, Ind. Eng. Chem. Res., 29, 2284 (1990)
Huang SH, Radosz M, Ind. Eng. Chem. Res., 30, 1994 (1991)
Wertheim MS, J. Stat. Phys., 35, 19 (1984)
Wertheim MS, J. Stat. Phys., 35, 35 (1984)
Wertheim MS, J. Stat. Phys., 42, 459 (1986)
Harvey AH, Copeman TW, Prausnitz JM, J. Phys. Chem., 92, 6432 (1988)
Maryott AA, Smith ER, Table of dielectric constants of pure liquids, NBSCircular 514, U.S. Government Printing Office, Washington, DC (1951)
Valavi M, Dehghani MR, Shahriari R, Fluid Phase Equilib., 344, 92 (2013)
Liu WB, Li YG, Lu JF, Ind. Eng. Chem. Res., 37(10), 4183 (1998)
Lu JF, Yu YX, Li YG, Fluid Phase Equilib., 85, 81 (1993)
Li Y, Tsinghua Science and Technology, 9, 444 (2004)
Li Y, Tsinghua Science and Technology, 11, 181 (2006)
Lee LL, The J. Chem. Phys., 78, 5270 (1983)
Robinson RA, Stokes RH, Electrolyte solutions, Dover Publications (2002)
Robinson RA, Harned HS, Chem. Rev., 28, 419 (1941)
Novotny P, Sohnel O, J. Chem. Eng. Data, 33, 49 (1988)
Lagarias JC, Reeds JA, Wright MH, Wright PE, SIAM J. on Optimization, 9, 112 (1998)
Ji XY, Adidharma H, Ind. Eng. Chem. Res., 46(13), 4667 (2007)
Chen SS, Kreglewski A, Berichte der Bunsengesellschaft fur physikalische Chemie, 81, 1048 (1977)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로