Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 3, 2013
Accepted December 16, 2013
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Breakthrough analysis of carbon dioxide adsorption on zeolite synthesized from fly ash
Department of Environmental Administration, Catholic University of Pusan, Busan 609-757, Korea 1School of Chemical and Biomolecular Engineering, Pusan National University, Busan 609-735, Korea
sskim@cup.ac.kr
Korean Journal of Chemical Engineering, February 2014, 31(2), 179-187(9), 10.1007/s11814-013-0281-7
Download PDF
Abstract
Zeolite (FAZ) was synthesized by the fusion method using coal fly ash to adsorb carbon dioxide. The experimental adsorption was operated batchwise in a laboratory-scale packed-bed adsorber to obtain the breakthrough curves of CO2 under conditions such as adsorption temperatures (20-80 ℃), flow rates of gaseous mixture of carbon dioxide and nitrogen (40-100 cm3/min), and concentration of CO2 (3000-10000 ppmv) at atmospheric pressure of 101.3kPa. The influence of the experimental conditions, such as the gas flow rate, concentration of CO2 and adsorption temperature on adsorption behavior, was discussed. The deactivation model, combined the adsorption with the deactivation of adsorbent, was used to analyze the physicochemical properties, such as the adsorption kinetics, capacity and heat of adsorption, by fitting the experimental data of the breakthrough curves to this model. The adsorptive activity and capacity of FAZ were as almost same as those of the commercial zeolite of Wako 4A.
References
Aresta M, Carbon dioxide recovery and utilization, Kluwer Academic Pub., Boston (2003)
Bartoo RK, Chem. Eng. Prog., 80, 35 (1984)
Pham TD, Liu QL, Lobo RF, Langmuir, 29(2), 832 (2013)
Aguilar-Armenta G, Hernandez-Ramirez G, Flores-Loyola E, Ugarte-Castaneda A, Silva-Gonzalez R, Tabares-Munoz C, Jimenez-Lopez A, Rodriguez-Castellon E, J. Phys. Chem., 105, 1313 (2001)
Kim J, Lin LC, Swisher JA, Haranczyk M, Smit B, J. Am. Chem. Soc., 134(46), 18940 (2012)
Siriwardane RV, Shen MS, Fisher EP, Energy Fuels, 17(3), 571 (2003)
Shang J, Li G, Singh R, Gu QF, Nairn KM, Bastow TJ, Medhekar N, Doherty CM, Hill AJ, Liu JZ, Webley PA, J. Am. Chem. Soc., 134(46), 19246 (2012)
Kumar V, Labhsetwar N, Meshram S, Rayalu S, Energy Fuels, 25(10), 4854 (2011)
Yang ST, Kim J, Ahn WS, Micropor. Mesopor. Mater, 135, 90 (2010)
Saha S, Chandra S, Garai B, Banerjee R, Indian J. Chem, 51, 1223 (2012)
Lee JS, Kim JH, Kim JT, Suh JK, Lee JM, Lee CH, J. Chem. Eng. Data, 47(5), 1237 (2002)
Ferreira D, Magalhaes R, Taveira P, Mendes A, Ind. Eng. Chem. Res., 50(17), 10201 (2011)
Hudson MR, Queen WL, Mason JA, Fickel DW, Lobo RF, Brown CM, J. Am. Chem. Soc., 134(4), 1970 (2012)
GOLDEN TC, SIRCAR S, J. Colloid Interface Sci., 162(1), 182 (1994)
Tanaka H, Eguchi H, Fujimoto S, Hino R, Fuel, 85(10-11), 1329 (2006)
Ojha K, Pradhan NC, Samanta AN, Bull. Mater., 77, 555 (2004)
Srinivasan A, Grutzeck MW, Environ. Sci. Technol., 33, 1464 (1999)
Yang RT, Gas separation by adsorption processes, Butterworth, Boston (1987)
Doraiswamy LK, Sharma MM, Heterogeneous reactions, Wiley, New York (1984)
Orbey N, Dogu G, Dogu T, Can. J. Chem. Eng, 60, 314 (1982)
Suzuki M, Adsorption engineering, Kodansga Ltd., Tokyo (1990)
Yasyerli N, Dogu T, Dogu G, Ar I, Chem. Eng. Sci., 51(11), 2523 (1996)
Suyadal Y, Erol M, Oguz H, Ind. Eng. Chem. Res., 39(3), 724 (2000)
Kopac T, Kocabas S, Chem. Eng. Commun., 190(5-8), 1041 (2003)
Park SW, Sung DH, Choi BS, Oh KJ, Moon KH, Sep. Sci. Technol., 41(12), 2665 (2006)
Park SW, Sung DH, Choi BS, Lee JW, Kumazawa H, J. Ind. Eng. Chem., 12(4), 522 (2006)
Hwang KS, Park SW, Park DW, Oh KJ, Kim SS, Korean J. Chem. Eng., 26(5), 1383 (2009)
Park SW, Choi BS, Lee JW, Sep. Sci. Technol., 42(10), 2221 (2007)
Oh KJ, Park DW, Kim SS, Park SW, Korean J. Chem. Eng., 27(2), 632 (2010)
Hwang KS, Son YS, Park SW, Park DW, Oh KJ, Kim SS, Sep. Sci. Technol., 45(1), 85 (2010)
Hwang KS, Han L, Park DW, Oh KJ, Kim SS, Park SW, Korean J. Chem. Eng., 27(1), 241 (2010)
Choe Y, Oh KJ, Kim SS, Park SW, Korean J. Chem. Eng., 27(3), 962 (2010)
Kopac T, Kocabas S, Chem. Eng. Commun., 190(5-8), 1041 (2003)
Dogu T, Am. Inst. Chem. Eng. J., 32, 849 (1986)
LaRosa J, Hwan S, Grutzeck MW, J. Am. Ceram. Soc, 75, 1574 (1992)
Querol X, Moreno N, Umana JC, Alastuey A, Hernandez E, Lopez-Soler A, Plana F, Int. J. Coal Geol., 50(1-4), 413 (2002)
Murayama N, Yamamoto H, Shibata J, Int. J. Min. Process, 64, 1 (2004)
Molina A, Poole C, Min. Eng, 17, 167 (2004)
Kim DJ, Shim WG, Moon H, Korean J. Chem. Eng., 18(4), 518 (2001)
Bartoo RK, Chem. Eng. Prog., 80, 35 (1984)
Pham TD, Liu QL, Lobo RF, Langmuir, 29(2), 832 (2013)
Aguilar-Armenta G, Hernandez-Ramirez G, Flores-Loyola E, Ugarte-Castaneda A, Silva-Gonzalez R, Tabares-Munoz C, Jimenez-Lopez A, Rodriguez-Castellon E, J. Phys. Chem., 105, 1313 (2001)
Kim J, Lin LC, Swisher JA, Haranczyk M, Smit B, J. Am. Chem. Soc., 134(46), 18940 (2012)
Siriwardane RV, Shen MS, Fisher EP, Energy Fuels, 17(3), 571 (2003)
Shang J, Li G, Singh R, Gu QF, Nairn KM, Bastow TJ, Medhekar N, Doherty CM, Hill AJ, Liu JZ, Webley PA, J. Am. Chem. Soc., 134(46), 19246 (2012)
Kumar V, Labhsetwar N, Meshram S, Rayalu S, Energy Fuels, 25(10), 4854 (2011)
Yang ST, Kim J, Ahn WS, Micropor. Mesopor. Mater, 135, 90 (2010)
Saha S, Chandra S, Garai B, Banerjee R, Indian J. Chem, 51, 1223 (2012)
Lee JS, Kim JH, Kim JT, Suh JK, Lee JM, Lee CH, J. Chem. Eng. Data, 47(5), 1237 (2002)
Ferreira D, Magalhaes R, Taveira P, Mendes A, Ind. Eng. Chem. Res., 50(17), 10201 (2011)
Hudson MR, Queen WL, Mason JA, Fickel DW, Lobo RF, Brown CM, J. Am. Chem. Soc., 134(4), 1970 (2012)
GOLDEN TC, SIRCAR S, J. Colloid Interface Sci., 162(1), 182 (1994)
Tanaka H, Eguchi H, Fujimoto S, Hino R, Fuel, 85(10-11), 1329 (2006)
Ojha K, Pradhan NC, Samanta AN, Bull. Mater., 77, 555 (2004)
Srinivasan A, Grutzeck MW, Environ. Sci. Technol., 33, 1464 (1999)
Yang RT, Gas separation by adsorption processes, Butterworth, Boston (1987)
Doraiswamy LK, Sharma MM, Heterogeneous reactions, Wiley, New York (1984)
Orbey N, Dogu G, Dogu T, Can. J. Chem. Eng, 60, 314 (1982)
Suzuki M, Adsorption engineering, Kodansga Ltd., Tokyo (1990)
Yasyerli N, Dogu T, Dogu G, Ar I, Chem. Eng. Sci., 51(11), 2523 (1996)
Suyadal Y, Erol M, Oguz H, Ind. Eng. Chem. Res., 39(3), 724 (2000)
Kopac T, Kocabas S, Chem. Eng. Commun., 190(5-8), 1041 (2003)
Park SW, Sung DH, Choi BS, Oh KJ, Moon KH, Sep. Sci. Technol., 41(12), 2665 (2006)
Park SW, Sung DH, Choi BS, Lee JW, Kumazawa H, J. Ind. Eng. Chem., 12(4), 522 (2006)
Hwang KS, Park SW, Park DW, Oh KJ, Kim SS, Korean J. Chem. Eng., 26(5), 1383 (2009)
Park SW, Choi BS, Lee JW, Sep. Sci. Technol., 42(10), 2221 (2007)
Oh KJ, Park DW, Kim SS, Park SW, Korean J. Chem. Eng., 27(2), 632 (2010)
Hwang KS, Son YS, Park SW, Park DW, Oh KJ, Kim SS, Sep. Sci. Technol., 45(1), 85 (2010)
Hwang KS, Han L, Park DW, Oh KJ, Kim SS, Park SW, Korean J. Chem. Eng., 27(1), 241 (2010)
Choe Y, Oh KJ, Kim SS, Park SW, Korean J. Chem. Eng., 27(3), 962 (2010)
Kopac T, Kocabas S, Chem. Eng. Commun., 190(5-8), 1041 (2003)
Dogu T, Am. Inst. Chem. Eng. J., 32, 849 (1986)
LaRosa J, Hwan S, Grutzeck MW, J. Am. Ceram. Soc, 75, 1574 (1992)
Querol X, Moreno N, Umana JC, Alastuey A, Hernandez E, Lopez-Soler A, Plana F, Int. J. Coal Geol., 50(1-4), 413 (2002)
Murayama N, Yamamoto H, Shibata J, Int. J. Min. Process, 64, 1 (2004)
Molina A, Poole C, Min. Eng, 17, 167 (2004)
Kim DJ, Shim WG, Moon H, Korean J. Chem. Eng., 18(4), 518 (2001)