ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received June 11, 2013
Accepted October 1, 2013
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Hydrogen production via sorption enhanced chemical looping reforming of glycerol using Ni-based oxygen carrier and Ca-based sorbent: Theoretical and experimental study

School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
wangwenju1982@gmail.com
Korean Journal of Chemical Engineering, February 2014, 31(2), 230-239(10), 10.1007/s11814-013-0196-3
downloadDownload PDF

Abstract

The sorption enhanced chemical looping reforming of glycerol (SECLRG) was proposed. This process can produce high purity H2 without need for additional gas separation equipment. Thermodynamic analysis on the reformer of SECLRG was conducted based on the minimization of Gibbs free energy. The results show that the favorable operation conditions for reformer are pressures around 1-20 atm, temperatures around 800 K, oxygen excess number of 1, and sorbent excess number of 1. The thermal efficiency with steam addition is higher than that without steam addition. The SECLRG was also examined in a fixed bed reactor, with NiO/Al2O3 and CaO particles as bed material and glycerol as fuel. Experimental results showed that the H2 molar fraction was higher with CaO than without it. Initially, high purity hydrogen (>95%) was obtained by SECLR of glycerol at 800 K and 1 atm.

References

World Energy Outlook, International Energy Agency (2004)
Alvarez-Galvan MC, Navarro RM, Rosa F, Briceno Y, Ridao MA, Fierro JLG, Fuel, 87(12), 2502 (2008)
Kalinci Y, Hepbasli A, Dincer I, Int. J. Hydrog. Energy, 34, 8799 (2009)
Van Gerpen J, Fuel Process. Technol., 86(10), 1097 (2005)
Cortright RD, Davda RR, Dumesic JA, Nature, 418, 964 (2002)
Huber GW, Shabaker JW, Dumesic JA, Science, 300, 2075 (2003)
Adhikari S, Fernando S, Gwaltney SR, Filipto SD, Bricka RM, Steele PH, Haryanto A, Int. J. Hydrog. Energy, 32, 2875 (2007)
Rossi CCRS, Alonso CG, Antunes OAC, Guirardello R, Cardozo-Filho L, Int. J. Hydrog. Energy, 34, 323 (2009)
Zhang BC, Tang XL, Li Y, Xu YD, Shen WJ, Int. J. Hydrog. Energy, 32, 2367 (2007)
Slinn M, Kendall K, Mallon C, Andrews J, Bioresour. Technol., 99(13), 5851 (2008)
Rennard DC, Kruger JS, Schmidt LD, ChemSusChem, 2, 89 (2009)
Wang WJ, Fuel Process. Technol., 91(11), 1401 (2010)
Wang XD, Li MS, Wang MH, Wang H, Li SR, Wang SP, Ma XB, Fuel, 88(11), 2148 (2009)
Wang H, Wang X, Li M, Li S, Wang S, Ma X, Int. J. Hydrog. Energy, 34, 5683 (2009)
Richter HJ, Knoche K, Reversibility of combustion processes, efficiency and costing-second law analysis of processes, ACS Symposium Series 235, ACS, Washington, DC, 1 (1983)
ISHIDA M, JIN HG, Energy, 19(4), 415 (1994)
Mattisson T, Lyngfelt A, Applications of chemical-looping combustion with capture of CO2. Proceedings of the 2nd Nordic minisymposium on carbon dioxide capture and storage, Goteborg, Sweden (2001)
Ryden M, Lyngfelt A, Mattisson T, Fuel, 85(12-13), 1631 (2006)
Wu YJ, Alvarado FD, Santos JC, Gracia F, Cunha AF, Rodrigues AE, Chem. Eng. Technol., 35(5), 847 (2012)
Cunha AF, Wu YJ, Alvarado FAD, Santos JC, Vaidya PD, Rodrigues AE, Can. J. Chem. Eng., 90(6), 1514 (2012)
Li YH, Wang WJ, Chen BH, Cao YY, Int. J. Hydrog. Energy, 35, 7768 (2010)
Kumar RV, Cole JA, Lyon RK, Unmixed reforming: An advanced steam reforming process, Preprints of Symposia, 218th,ACS National Meeting, August 22-26, New Orleans, LA, 44, 894 (1999)
Lyon RK, Cole JA, Combust. Flame, 121(1-2), 249 (2000)
Dupont V, Ross AB, Hanley I, Twigg MV, Int. J. Hydrog. Energy, 32, 67 (2007)
da Silva AL, Muller IL, J. Power Sources, 196(20), 8568 (2011)
Ryden M, Ramos P, Fuel Process. Technol., 96, 27 (2012)
Wang WJ, Cao YY, Wang YQ, J. Energy Inst., 84, 94 (2011)
Wang WJ, Cao YY, Int. J. Energy Res., 37(1), 25 (2013)
Pimenidou P, Rickett G, Dupont V, Twigg MV, Bioresour. Technol., 101(23), 9279 (2010)
de Diego LF, Ortiz M, Adanez J, Garcia-Labiano F, Abad A, Gayan P, Chem. Eng. J., 144(2), 289 (2008)
Wang Z, Zhou J, Wang Q, Fan J, Cen K, Int. J. Hydrog. Energy, 31, 945 (2006)
Hanaoka T, Yoshida T, Fujimoto S, Kamei K, Harada M, Suzuki Y, Hatano H, Yokoyama S, Minowa T, Biomass Bioenerg., 28(1), 63 (2005)
Curran GP, Fink CE, Gorin E, Adv. Chem. Ser., 69, 141 (1967)
Lin SY, Harada M, Suzuki Y, Hatano H, Fuel, 85(7-8), 1143 (2006)
Feng B, An H, Tan E, Energy Fuels, 21(2), 426 (2007)
Kinoshita CM, Turn SQ, Int. J. Hydrog. Energy, 28, 1065 (2003)
Mattisson T, Johansson M, Lyngfelt A, Fuel, 85(5-6), 736 (2006)
Corbella BM, De Diego L, Garcia F, Adanez J, Palacios JM, Energy Fuels, 19(2), 433 (2005)
Beatriz MC, de Diego Lf, Garca-Labiano F, Adnez J, Palacios JM, Environ. Sci. Technol., 39, 5796 (2005)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로