ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received October 20, 2012
Accepted September 30, 2013
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Wastewater treatment using photo-impinging streams cyclone reactor: Computational fluid dynamics and kinetics modeling

Refining Technology Development Division, Research Institute of Petroleum Industry, Tehran, Iran 1Chemical Engineering Department, Amirkabir University of Technology, Tehran, Iran
Korean Journal of Chemical Engineering, February 2014, 31(2), 240-247(8), 10.1007/s11814-013-0191-8
downloadDownload PDF

Abstract

A photo impinging streams cyclone reactor has been used as a novel apparatus in photocatalytic degradation of organic compounds using titanium dioxide nanoparticles in wastewater. The operating parameters, including catalyst loading, pH, initial phenol concentration and light intensity have been optimized to increase the efficiency of the photocatalytic degradation process within this photoreactor. The results have demonstrated a higher efficiency and an increased performance capability of the present reactor in comparison with the conventional processes. In the next step, residence time distribution (RTD) of the slurry phase within the reactor was measured using the impulse tracer method. A CFD-based model for predicting the RTD was also developed which compared well with the experimental results. The RTD data was finally applied in conjunction with the phenol degradation kinetic model to predict the apparent rate coefficient for such a reaction.

References

Ray S, Lalman JA, Biswas N, Chem. Eng. J., 150(1), 15 (2009)
MB Ray, JP Chen, LK Wang, SO Pehkonen, Handbook of Environmental Engineering, Volume 4, Advanced physicochemical treatment processes, Chapter 14, Advanced Oxidation Processes, Springer (2007)
Shahrezaei F, Mansouri Y, Zinatizadeh AAL, Akhbari A, Powder Technol., 221, 203 (2012)
Elghniji K, Hentati O, Mlaik N, Mahfoudh A, Ksibi M, J. Environ. Sci., 24, 479 (2012)
Gumy D, Rincon AG, Hajdu R, Pulgarin C, Sol. Energy, 80, 1376 (2006)
Herrmann JM, Catal. Today, 53(1), 115 (1999)
Fogler HS, Elements of Chemical Reaction Engineering, Prentice- Hall PTR Inc., 581 (1999)
Royaee SJ, Sohrabi M, Desalination, 253(1-3), 57 (2010)
Hjertager LK, Hjertager BH, Solberg T, Comput. Chem. Eng., 26(4-5), 507 (2002)
Marchisio DL, Barresi AA, Chem. Eng. Sci., 58(16), 3579 (2003)
Sozzi DA , F. Int. J. Heat Fluid Flow, 27, 1043 (2006)
Ranade VV, Computational flow modeling for chemical reactor engineering, Academic Press, New York (2002)
Wang SJ, Devahastin S, Mujumdar AS, Appl. Therm. Eng., 26, 519 (2006)
Ghirelli F, Hermansson S, Thunman H, Leckner B, Prog. Comput. Fluid Dyn., 6, 241 (2006)
Vedantam S, Joshi JB, Koganti SB, Ind. Eng. Chem. Res., 45(18), 6360 (2006)
Atiemo Obeng VA, Paul EL, Kresta SM, Handbook of industrial mixing: Science and practice, Wiley-IEEE (2004)
Choi BS, Wan B, Philyaw S, Dhanasekharan K, Ring TA, Ind. Eng. Chem. Res., 43(20), 6548 (2004)
BS Choi, B Wan, S Philyaw, K Dhanasekharan, TA Ring, Residence time distributions in a stirred tank-comparison of CFD predictions with experiment, in: Proceedings of the AIChE Annual Meeting (2007)
Hatchard CG, Parker CA, Proc. R. Soc., London, Ser. A, 235, 518 (1956)
Duran JE, Mohseni M, Taghipour F, Chem. Eng. Sci., 65(3), 1201 (2010)
Van Gerven T, Mul G, Moulijn J, Stankiewicz A, Chem. Eng. Process., 46(9), 781 (2007)
Herrmann JM, Top. Catal., 34, 49 (2005)
Konstantinou IK, Sakkas VA, Albanis TA, Water Res., 36, 2733 (2002)
Pardeshi SK, Patil AB, Sol. Energy, 82, 700 (2008)
Li S, Ma Z, Zhang J, Wu Y, Gong Y, Catal. Today, 139, 109 (2008)
Chiou CH, Wu CY, Juang RS, Chem. Eng. J., 139(2), 322 (2008)
Silva CG, Faria JL, J. Mol. Catal. A: Chem, 350, 147 (2009)
Lathasree S, Rao AN, SivaSankar B, Sadasivam V, Rengaraj K, J. Mol. Catal. A-Chem., 223(1-2), 101 (2004)
Sobczynski A, Duczmal L, Zmudzinski W, J. Mol. Catal. A-Chem., 213(2), 225 (2004)
Pujara K, Kamble SP, Pangarkar VG, Ind. Eng. Chem. Res., 46(12), 4257 (2007)
Sakthivel S, Neppolian B, Shankar MV, Arabindoo B, Palanichamy M, Murugesan V, Sol. Energy Mater. Sol. Cells, 77(1), 65 (2003)
Aran J, Nieto JLM, Melian JAH, Rodriguez JMD, Diaz OG, Perna JP, Bergasa CA, Mendez J, Chemosphere, 55, 893 (2004)
Ollis DF, Pelizzetti E, Serpone N, Environ. Sci. Technol., 25, 1523 (1991)
Hosseini SN, Borghei SM, Vossoughi M, Taghavinia N, Appl. Catal. B: Environ., 74(1-2), 53 (2007)
Sohrabi M, Marvast MA, Ind. Eng. Chem. Res., 39(6), 1903 (2000)
Chiou CH, Wu CY, Juang RS, Sep. Purif. Technol., 62(3), 559 (2008)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로