Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received April 19, 2013
Accepted October 27, 2013
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Synthesis of polymer membranes of different porosity and their application for phenol removal from liquid phase
Faculty of Chemistry, Adam Mickiewicz University in Poznan, Umultowska 89b, 61-614 Pozna , Poland
pietrob@amu.edu.pl
Korean Journal of Chemical Engineering, February 2014, 31(2), 304-309(6), 10.1007/s11814-013-0227-0
Download PDF
Abstract
Preparation of polymeric membranes based on polyethersulfone (PES) modified by adding different amounts of a pore-forming agent (PVP) is presented, and potential application of the membranes obtained for removal of phenol from the liquid phase is examined. The addition of various amounts of PVP has been shown to bring about changes in the content of the surface oxygen groups, but has no significant effect on the chemical character of the groups and acidic groups dominate. Filtration by phenol solution leads to significant changes in the total content of surface oxides; however, the acidic groups remain dominant. Membranes characterized by higher porosity exhibited more stable and higher rejection ratio for phenol removal. Although all the membranes were characterized by similar rejection ratios for phenol removal, the cake resistance (Rc) and pore resistance (Rp) values were found to depend significantly on the structure and porosity of the membrane applied for filtration.
References
Akthakul A, McDonald WF, Mayes AM, J. Membr. Sci., 208(1-2), 147 (2002)
Li NN, Fane AG, Winston Ho WS, Matsuura T, Advanced membrane technology and applications, Wiley, New Jersey (2008)
Pabby AK, Rizvi SSH, Sastre AM, Membrane separations- chemical, pharmaceutical, food, and biotechnological applications, Taylor & Francis (CRC Press), New York (2009)
Shin SJ, Kim JP, Kim HJ, Jeon JH, Min BR, Desalination, 186(1-3), 1 (2005)
Cheryan M, Ultrafiltration and microfiltration handbook, Technomic Publishing Company, Lancaster, PA (1998)
Vankelecom IFJ, Chem. Rev., 102(10), 3779 (2002)
Zhao WF, Huang JY, Fang BH, Nie SQ, Yi N, Su BH, Li HF, Zhao CS, J. Membr. Sci., 369(1-2), 258 (2011)
Meincken M, Roux SP, Jacobs EP, Appl. Surf. Sci., 252(5), 1772 (2005)
Yang RT, Adsorbents: Fundamentals and applications, Wiley, New York (2003)
Bhatnagar A, J. Hazard. Mater., 139(1), 93 (2007)
Din ATM, Hameed BH, Ahmad AL, J. Hazard. Mater., 161(2-3), 1522 (2009)
Noll KE, Gournaris V, Hou WS, Adsorption technology for air and water pollution control, Lewis, Chelsea MI (1992)
Nakagawa K, Namba A, Mukai SR, Tamon H, Ariyadejwanich P, Tanthapanichakoon W, Water Res., 38, 1791 (2004)
Ozkaya B, J. Hazard. Mater., 129(1-3), 158 (2006)
Kataoka T, Nishiki T, Kimura S, J. Membr. Sci., 41, 197 (1989)
Kujawski W, Warszawski A, Ratajczak W, Porebski T, Capala W, Ostrowska I, Desalination, 163(1-3), 287 (2004)
Basile A, Gallucci F, Membranes for Membrane Reactors. Preparation, optimalization and selection, Wiley, New York (2011)
Wan YH, Wang XD, Zhang XJ, J. Membr. Sci., 135(2), 263 (1997)
Kojima T, Nishijima K, Matsukata M, J. Membr. Sci., 102, 43 (1995)
CF Schutte, Desalination, 158(1-3), 285 (2003)
Ben-Daid A, Bason S, Jopp J, Oren Y, Freger V, J. Membr. Sci., 281(1-2), 480 (2006)
Pereira CC, Habert AC, Nobrega R, Borges CP, J. Membr. Sci., 138(2), 227 (1998)
Wu P, Field RW, England R, Brisdon BJ, J. Membr. Sci., 190(2), 147 (2001)
Hofman M, Pietrzak R, Chem. Eng. J., 170(1), 202 (2011)
Li NN, Fane AG, Winston Ho WS, Matsuura T, Advanced membrane technology and applications, Wiley, New Jersey (2008)
Pabby AK, Rizvi SSH, Sastre AM, Membrane separations- chemical, pharmaceutical, food, and biotechnological applications, Taylor & Francis (CRC Press), New York (2009)
Shin SJ, Kim JP, Kim HJ, Jeon JH, Min BR, Desalination, 186(1-3), 1 (2005)
Cheryan M, Ultrafiltration and microfiltration handbook, Technomic Publishing Company, Lancaster, PA (1998)
Vankelecom IFJ, Chem. Rev., 102(10), 3779 (2002)
Zhao WF, Huang JY, Fang BH, Nie SQ, Yi N, Su BH, Li HF, Zhao CS, J. Membr. Sci., 369(1-2), 258 (2011)
Meincken M, Roux SP, Jacobs EP, Appl. Surf. Sci., 252(5), 1772 (2005)
Yang RT, Adsorbents: Fundamentals and applications, Wiley, New York (2003)
Bhatnagar A, J. Hazard. Mater., 139(1), 93 (2007)
Din ATM, Hameed BH, Ahmad AL, J. Hazard. Mater., 161(2-3), 1522 (2009)
Noll KE, Gournaris V, Hou WS, Adsorption technology for air and water pollution control, Lewis, Chelsea MI (1992)
Nakagawa K, Namba A, Mukai SR, Tamon H, Ariyadejwanich P, Tanthapanichakoon W, Water Res., 38, 1791 (2004)
Ozkaya B, J. Hazard. Mater., 129(1-3), 158 (2006)
Kataoka T, Nishiki T, Kimura S, J. Membr. Sci., 41, 197 (1989)
Kujawski W, Warszawski A, Ratajczak W, Porebski T, Capala W, Ostrowska I, Desalination, 163(1-3), 287 (2004)
Basile A, Gallucci F, Membranes for Membrane Reactors. Preparation, optimalization and selection, Wiley, New York (2011)
Wan YH, Wang XD, Zhang XJ, J. Membr. Sci., 135(2), 263 (1997)
Kojima T, Nishijima K, Matsukata M, J. Membr. Sci., 102, 43 (1995)
CF Schutte, Desalination, 158(1-3), 285 (2003)
Ben-Daid A, Bason S, Jopp J, Oren Y, Freger V, J. Membr. Sci., 281(1-2), 480 (2006)
Pereira CC, Habert AC, Nobrega R, Borges CP, J. Membr. Sci., 138(2), 227 (1998)
Wu P, Field RW, England R, Brisdon BJ, J. Membr. Sci., 190(2), 147 (2001)
Hofman M, Pietrzak R, Chem. Eng. J., 170(1), 202 (2011)