ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received August 31, 2013
Accepted November 11, 2013
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Characterization of fluidization regime in circulating fluidized bed reactor with high solid particle concentration using computational fluid dynamics

1Fuels Research Center, Department of Chemical Technology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Patumwan, Bangkok 10330, Thailand 2Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, 254 Phayathai Road, Patumwan, Bangkok 10330, Thailand 3Department of Chemical and Biological Engineering, Armour College of Engineering, Illinois Institute of Technology, 10 W. 33rd Street, Chicago, IL 60616, USA
benjapon.c@chula.ac.th
Korean Journal of Chemical Engineering, February 2014, 31(2), 350-363(14), 10.1007/s11814-013-0240-3
downloadDownload PDF

Abstract

The hydrodynamics inside a high solid particle concentration circulating fluidized bed reactor was investigated using computational fluid dynamics simulation. Compared to a low solid particle reactor, all the conventional fluidization regimes were observed. In addition, two unconventional fluidization regimes, circulating-turbulent and dense suspension bypassing regimes, were found with only primary gas injection. The circulating-turbulent fluidization regime showed uniformly dense solid particle distribution in all the system directions, while the dense suspension bypassing fluidization regime exhibited the flow of solid particles at only one side system wall. Then, comprehensive fluidization regime clarification and mapping were evaluated using in-depth system parameters. In the circulatingturbulent fluidization regime, the total granular temperature was low compared to the adjacent fluidization regimes. In the dense suspension bypassing fluidization regime, the highest total granular temperature was obtained. The circulating-turbulent and dense suspension bypassing fluidization regimes are suitable for sorption and transportation applications, respectively.

References

Grace JR, Avidan AA, Knowlton TM, Circulating fluidized beds, Blackie Academic and Professional, London (1997)
Basu P, Combustion and gasification in fluidized beds, CRC Press, New York (2006)
Kunii D, Levenspiel O, Fluidization engineering, Butterworth-Heinemann, Boston (1991)
Gidaspow D, Multiphase flow and fluidization: Continuum and kinetic theory description, Academic Press, Boston (1994)
Rhodes M, Introduction to particle technology, Wiley, West Sussex, UK (2008)
Yang WC, Handbook of fluidization and fluid-particle systems, Marcel Dekker, Inc., New York (2003)
Masuda H, Higashitani K, Yoshida H, Powder technology: Handling and operations, process instrumentation, and working hazards, CRC Press, Boca Raton, FL (2006)
Chalermsinsuwan B, Kuchonthara P, Piumsomboon P, Chem. Eng. Process., 49(11), 1144 (2010)
Gidaspow D, Jiradilok V, Computational techniques: The multiphase CFD approach to fluidization and green energy technologies, Nova Science Publishers, Inc., New York (2010)
Bi HT, Grace JR, Int. J. Multiph. Flow, 21(6), 1229 (1995)
Chalermsinsuwan B, Piumsomboon P, Chem. Eng. Sci., 66(22), 5602 (2011)
Rabinovich E, Kalman H, Powder Technol., 207(1-3), 119 (2011)
Gao X, Wu C, Cheng YW, Wang LJ, Li X, Powder Technol., 228, 1 (2012)
Makkawi YT, Wright PC, Chem. Eng. Sci., 57(13), 2411 (2002)
Hou QF, Zhou ZY, Yu AB, Chem. Eng. Sci., 84, 449 (2012)
Jaiboon O, Chalermsinsuwan B, Mekasut L, Piumsomboon P, Powder Technol., 233, 215 (2013)
Almuttahar A, Taghipour F, Powder Technol., 185(1), 11 (2008)
Chalermsinsuwan B, Piumsomboon P, Gidaspow D, Chem. Eng. Sci., 64(6), 1195 (2009)
Guan G, Fushimi C, Tsutsumi A, Ishizuka M, Matsuda S, Hatano H, Suzuki Y, Particuology, 8(6), 602 (2010)
Qi M, Barghi S, Zhu J, Chem. Eng. J., 209, 633 (2012)
Chalermsinsuwan B, Piumsomboon P, Gidaspow D, AIChE J., 56(11), 2805 (2010)
Tatemoto Y, Yano S, Mawatari Y, Noda K, Komatsu N, Chem. Eng. Sci., 62(1-2), 471 (2007)
da Silva FRGB, de Souza M, de Souza da Costa AM, de Matos Jorge LM, Paraiso PR, Powder Technol., 229, 61 (2012)
Grace JR, Powder Technol., 113(3), 242 (2000)
Kim SW, Kirbas G, Bi H, Lim CJ, Grace JR, Chem. Eng. Sci., 59(18), 3955 (2004)
Li ZQ, Wu CN, Wei F, Jin Y, Powder Technol., 139(3), 214 (2004)
Bastos JCSC, Rosa LM, Mori M, Marini F, Maitignoni WP, Catal. Today, 130(2-4), 462 (2008)
Zhu J, Particuology, 8, 640 (2010)
Versteeg HK, Malalasekera W, An introduction to computational fluid dynamics: The finite volume method, Prentice Hall, New Jersey (2007)
Fluent, Inc., Fluent 6.3 User’s Guide, Fluent, Inc., Lebanon (2006)
Chapman S, Cowling TG, The mathematical theory of nonuniform gases, Cambridge University Press, New York (1970)
Zhang N, Lu BN, Wang W, Li JH, Chem. Eng. J., 162(2), 821 (2010)
Bi H, Zhu J, AIChE J., 39(8), 1272 (1993)
Issangya AS, Bai D, Bi HT, Lim KS, Zhu J, Grace JR, Chem. Eng. Sci., 54(22), 5451 (1999)
Cruz E, Steward FR, Pugsley T, Powder Technol., 169(3), 115 (2006)
Almuttahar A, Taghipour F, Chem. Eng. Sci., 63(6), 1696 (2008)
Wang X, Jiang F, Lei J, Wang J, Wang S, Xu X, Xiao Y, Appl. Therm. Eng., 31(14-15), 2254 (2011)
Zhu HY, Zhu J, Chem. Eng. Sci., 63(11), 2920 (2008)
Qi M, Zhu J, Barghi S, Chem. Eng. Sci., 84, 437 (2012)
Zhu X, Yang C, Li C, Liu Y, Wang L, Li T, Geng Q, Chem. Eng. J., 215-216, 188 (2013)
Thummakul T, Piumsomboon P, Chalermsinsuwan B, CFD simulation of carbon dioxide reduction from flue gas using solid sorbent in circulating fluidized bed reactor, Master’s Degree Thesis, Chulalongkorn University, Bangkok (2013)
Chalermsinsuwan B, Gidaspow D, Piumsomboon P, Chem. Eng. J., 171(1), 301 (2011)
Chalermsinsuwan B, Chanchuey T, Buakhao W, Gidaspow D, Piumsomboon P, Chem. Eng. J., 189-190, 313 (2012)
Nikolopoulos A, Nikolopoulos N, Charitos A, Grammelis P, Kakaras E, Bidwe AR, Varela G, Chem. Eng. Sci., 90, 137 (2013)
Johnson PC, Jackson R, J. Fluid Mech., 176, 67 (1987)
Wang JW, Ge W, Li JH, Chem. Eng. Sci., 63(6), 1553 (2008)
Rhodes MJ, Sollaart M, Wang XS, Powder Technol., 99(2), 194 (1998)
Monazam ER, Shadle LJ, Mei JS, Spenik J, Powder Technol., 155(1), 17 (2005)
Matonis D, Gidaspow D, Bahary M, AIChE J., 48(7), 1413 (2002)
Jiradilok V, Gidaspow D, Breault RW, Chem. Eng. Sci., 62(13), 3397 (2007)
Tartan M, Gidaspow D, AIChE J., 50(8), 1760 (2004)
Kashyap M, Chalermsinsuwan B, Gidaspow D, Particuology, 9(6), 572 (2011)
Campbell C, Wang D, J. Fluid Mech., 227, 495 (1991)
Cody GD, Goldfarb DJ, Storch GV, Norris AN, Powder Technol., 87(3), 211 (1996)
Gidaspow D, Lu HL, AIChE J., 42(9), 2503 (1996)
Polashenski W, Chen JC, Powder Technol., 90(1), 13 (1997)
Polashenski W, Chen JC, Ind. Eng. Chem. Res., 38(3), 705 (1999)
Jung J, Gidaspow D, Gamwo IK, Ind. Eng. Chem. Res., 44(5), 1329 (2005)
Jiradilok V, Gidaspow D, Damronglerd S, Koves WJ, Mostofi R, Chem. Eng. Sci., 61(17), 5544 (2006)
Jaiboon O, Chalermsinsuwan B, Mekasut L, Piumsomboon P, Chem. Eng. J., 219, 262 (2013)
Svoboda K, Kalisz S, Miccio F, Wieczorek K, Pohorely M, Powder Technol., 192(1), 65 (2009)
Miller A, Gidaspow D, AIChE J., 38, 1801 (1992)
Gidaspow D, Mostofi R, AIChE J., 49(4), 831 (2003)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로