Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received May 31, 2013
Accepted October 30, 2013
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Estimation on metabolic pathway of Pseudomonas sp. SMIC-3 for 1-methyl-2-pyrrolidinone based on physiological and biochemical analyses
Department of Chemical & Biological Engineering, Seokyeong University, 16-1, Jungneung-dong, Sungbuk-gu, Seoul 136-704, Korea
baakdoo@skuniv.ac.kr, baakdoo@naver.com
Korean Journal of Chemical Engineering, March 2014, 31(3), 475-484(10), 10.1007/s11814-013-0231-4
Download PDF
Abstract
Pseudomonas sp. SMIC-3 grown on NMP was physiologically differentiated from that on glucose. Growth of SMIC-3 in an NMP-defined medium was approximately three times lower than that in a glucose-defined medium. Methylamine and 1-methyl succinimide were detected in culture fluid of SMIC-3 grown in an NMP-defined medium. Methylamine content in the culture fluid was very similar to NMP consumed by SMIC-3, but 1-methyl succinimide content was much less than the consumed NMP. Crude enzyme isolated from SMIC-3 grown on NMP catalyzed production of methylamine, 1-methyl succinimide, and succinate from NMP but that on glucose did not. Crude enzyme isolated from SMIC-3 grown on glucose and NMP commonly catalyzed dehydrogenation of pyruvate, isocitrate, and malate coupled to reduction of NAD+ to NADH. 2D-SDS-PAGE pattern of total soluble proteins isolated from SMIC-3 grown on glucose was significantly different from that on NMP. Physiological function of SMIC-3 for catabolizing NMP may be selectively induced and activated by NMP.
References
Reisch M, Chem. Eng. News, 86, 32 (2008)
Van der Meer JR, Roelofsen W, Schraa G, Zehner AJB, FEMS Microbiol. Ecol., 45, 333 (1987)
Lee WJ, Lee JK, Chung J, Cho YJ, Park DH, J. Microbiol. Biotechnol., 20, 1230 (2010)
Chow ST, Ng TL, Water Res., 17, 117 (1983)
Huertas MJ, Luque-Almagro VM, Martinez-Luque M, Blasco R, Moreno-Vivian C, Castillo F, Roldan MD, Biochem. Soc. Trans., 34, 152 (2006)
Nam IH, Chang YS, Hong HB, Lee YE, Appl. Microbiol. Biotechnol., 62(2-3), 284 (2003)
Nojiri H, Maeda K, Sekiguchi H, Urata M, Shintani M, Yoshida T, Habe H, Omori T, Biosci. Biotechnol. Biochem., 66, 897 (2002)
O’Mahony MM, Dobson AD, Barnes JD, Singleton I, Chemosphere, 63, 307 (2006)
Onaca C, Kieninger M, Engesser KH, Altenbuchner J, J. Bacteriol., 189, 3759 (2007)
Yen KM, Karl MR, Blatt LM, J. Bacteriol., 173, 5315 (1991)
Ochman H, Moran NA, Science, 292, 1096 (2001)
Daddaoua A, Krell T, Ramos JL, J. Biol. Chem., 32, 21360 (2009)
Shin HS, Jung DG, Bull. Kor. Chem. Soc., 25, 806 (2004)
Wilkins JC, Homer KA, Beighton D, Appl. Environ. Microbiol., 67, 3396 (2001)
Lee JK, Lee WJ, Cho YJ, Park DH, Lee YW, Chung J, Korean J. Chem. Eng., 27(6), 1816 (2010)
Ferenci T, Adv. Microb. Physiol., 53, 169 (2008)
Haibi A, Vahabzadeh F, J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng., 48, 279 (2013)
Niqam A, Phale PS, Wanqikar PP, Biorersour. Technol., 114, 484 (2012)
Duffes F, Jenoe P, Boyaval P, Appl. Environ. Microbiol., 66, 4318 (2000)
Lovley DR, Klug MJ, Appl. Environ. Microbiol., 45, 1310 (1983)
Park JJ, Jung SY, Park CG, Lee SC, Kim JN, Kim JC, Korean J. Chem. Eng., 29(4), 489 (2012)
Zhang D, Ma Y, Feng H, Luo H, Chen J, Hao Y, Korean J. Chem. Eng., 29, 769 (2012)
Van der Meer JR, Roelofsen W, Schraa G, Zehner AJB, FEMS Microbiol. Ecol., 45, 333 (1987)
Lee WJ, Lee JK, Chung J, Cho YJ, Park DH, J. Microbiol. Biotechnol., 20, 1230 (2010)
Chow ST, Ng TL, Water Res., 17, 117 (1983)
Huertas MJ, Luque-Almagro VM, Martinez-Luque M, Blasco R, Moreno-Vivian C, Castillo F, Roldan MD, Biochem. Soc. Trans., 34, 152 (2006)
Nam IH, Chang YS, Hong HB, Lee YE, Appl. Microbiol. Biotechnol., 62(2-3), 284 (2003)
Nojiri H, Maeda K, Sekiguchi H, Urata M, Shintani M, Yoshida T, Habe H, Omori T, Biosci. Biotechnol. Biochem., 66, 897 (2002)
O’Mahony MM, Dobson AD, Barnes JD, Singleton I, Chemosphere, 63, 307 (2006)
Onaca C, Kieninger M, Engesser KH, Altenbuchner J, J. Bacteriol., 189, 3759 (2007)
Yen KM, Karl MR, Blatt LM, J. Bacteriol., 173, 5315 (1991)
Ochman H, Moran NA, Science, 292, 1096 (2001)
Daddaoua A, Krell T, Ramos JL, J. Biol. Chem., 32, 21360 (2009)
Shin HS, Jung DG, Bull. Kor. Chem. Soc., 25, 806 (2004)
Wilkins JC, Homer KA, Beighton D, Appl. Environ. Microbiol., 67, 3396 (2001)
Lee JK, Lee WJ, Cho YJ, Park DH, Lee YW, Chung J, Korean J. Chem. Eng., 27(6), 1816 (2010)
Ferenci T, Adv. Microb. Physiol., 53, 169 (2008)
Haibi A, Vahabzadeh F, J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng., 48, 279 (2013)
Niqam A, Phale PS, Wanqikar PP, Biorersour. Technol., 114, 484 (2012)
Duffes F, Jenoe P, Boyaval P, Appl. Environ. Microbiol., 66, 4318 (2000)
Lovley DR, Klug MJ, Appl. Environ. Microbiol., 45, 1310 (1983)
Park JJ, Jung SY, Park CG, Lee SC, Kim JN, Kim JC, Korean J. Chem. Eng., 29(4), 489 (2012)
Zhang D, Ma Y, Feng H, Luo H, Chen J, Hao Y, Korean J. Chem. Eng., 29, 769 (2012)