Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received August 30, 2013
Accepted November 11, 2013
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Isolation and characterization of thermostable phycocyanin from Galdieria sulphuraria
1Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea 2Advanced Biomass R&D Center, #2502 Building W1-3, KAIST, 291 Daehak-ro, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea
Korean Journal of Chemical Engineering, March 2014, 31(3), 490-495(6), 10.1007/s11814-013-0239-9
Download PDF
Abstract
Phycocyanin is a highly valuable pigmented protein synthesized by several species of cyanobacteria and red alga. In this study we demonstrate the production of thermostable phycocyanin from the unicellular red alga Galdieria sulphuraria. Phycocyanin was extracted by repeated freeze-thaw cycles and purified in a two-step process using ammonium sulfate fractionation, at 25% and 50% concentrations. Purified phycocyanin exhibited maximum absorbance at 620 nm, and the purity ratio (A620/A280) was found to be greater than 4. The recovery efficiency of phycocyanin from the crude extract was above 80%. In total, approximately 19 milligram pure phycocyanin was obtained from 3 g of wet cell mass of Galdieria sp. Subunits α and β of the protein were separated by SDS-PAGE and analyzed by MALDITOF mass spectrometry for identification, which confirmed that the isolated protein is phycocyanin. The molecular weight of α and β subunits of phycocyanin was found to be 17.6 and 18.4 kDa, respectively.
References
Berns DS, MacColl R, Chem. Rev., 89, 4 (1989)
Eriksen NT, Appl. Microbiol. Biotechnol., 80(1), 1 (2008)
Chaiklahan R, Chirasuwan N, Bunnag B, Process Biochem., 47, 4 (2012)
Grossman AR, Schaefer MR, Chiang GG, Collier JL, Microbiol. Rev., 57, 3 (1993)
Ladero M, Santos A, Garcia-Ochoa F, Enzyme Microb. Technol., 38(1-2), 1 (2006)
Pang P, Koska J, Coad BR, Brooks DE, Haynes CA, Biotechnol. Bioeng., 90(1), 1 (2005)
Campbell D, Hurry V, Clarke AK, Gustafsson P, Oquist G, Microbiol. Mol. Biol. Rev., 62, 3 (1998)
Govindjee, Shevela D, Front. Plant Sci., 2, 1 (2011)
MacColl R, J. Struct. Biol., 124, 2 (1998)
Glazer A, J. Appl. Phycol., 6, 2 (1994)
Wedemayer GJ, Wemmer DE, Glazer AN, J. Biol. Chem., 266, 8 (1991)
O’Carra P, Murphy RF, Killilea SD, Biochem. J., 187, 2 (1980)
Samsonoff W, MacColl R, Arch. Microbiol., 176, 6 (2001)
Gross W, Schnarrenberger C, Plant Cell Physiol., 36, 4 (1995)
Stec B, Troxler RF, Teeter MM, Biophys. J., 76, 6 (1999)
Adir N, Dobrovetsky Y, Lerner N, J. Mol. Biol., 313, 1 (2001)
Yoshida A, Takagaki Y, Nishimune T, Biosci., Biotechnol., Biochem., 60, 1 (1996)
Brody SS, Brody M, Biochim. Biophys. Acta, 50, 2 (1961)
Graziani G, Schiavo S, Nicolai MA, Buono S, Fogliano V, Pinto G, et al., Food Funct., 4, 1 (2013)
Kronick MN, Grossman PD, Clin. Chem., 29, 9 (1983)
Li B, Gao MH, Zhang XC, Chu XM, Biotechnol. Appl. Biochem., 43, 3 (2006)
Chakdar H, Jadhav SD, Dhar DW, Pabbi S, J. Sci. Ind. Res., 71, 1 (2012)
Mishra SK, Shrivastav A, Mishra S, Process Biochem., 43, 4 (2008)
Spolaore P, Joannis-Cassan C, Duran E, Isambert A, J. Biosci. Bioeng., 101, 2 (2006)
Patel A, Mishra S, Pawar R, Ghosh PK, Protein Exp. Purif., 40, 2 (2005)
Mimuro M, Fuglistaller P, Rumbeli R, Zuber H, Biochim. Biophys. Acta, Bioenergy, 848, 2 (1986)
Lien TS, Wu ST, Yu ST, Too JR, Korean J. Chem. Eng., 24, 5 (2007)
Bennett A, Bogorad L, J. Cell Biol., 58, 2 (1973)
Mishra SK, Shrivastav A, Mishra S, Protein Expression Purif., 80, 2 (2011)
Shevchenko A, Wilm M, Vorm O, Mann M, Anal. Chem., 68, 5 (1996)
Soni B, Kalavadia B, Trivedi U, Madamwar D, Process Biochem., 41, 9 (2006)
Mishra SK, Shrivastav A, Pancha I, Jain D, Mishra S, Int. J. Biol. Macromol., 47, 5 (2010)
Patel A, Mishra S, Pawar R, Ghosh PK, Protein Exp. Purif., 40, 2 (2005)
Santiago-Santos MC, Ponce-Noyola T, Olvera-Ramirez R, Ortega-Lopez J, Canizares-Villanueva RO, Process Biochem., 39, 12 (2004)
Boussiba S, Richmond A, Arch. Microbiol., 120, 2 (1979)
MacColl R, Berns DS, Koven NL, Arch. Biochem. Biophys., 146, 2 (1971)
Olvera-Ramirez R, Coria-Cedillo M, Canizares-Villanueva RO, Martinez-Jeronimo F, Ponce-Noyola T, Rios-Leal E, Bioresour. Technol., 72, 2 (2000)
Chae KJ, Jang A, Yim SK, Kim IS, Bioresour. Technol., 99(1), 1 (2008)
Singh NK, Parmar A, Madamwar D, Bioresour. Technol., 100, 4 (2009)
Brock TD, Genetics, 146, 1 (1997)
Eriksen NT, Appl. Microbiol. Biotechnol., 80(1), 1 (2008)
Chaiklahan R, Chirasuwan N, Bunnag B, Process Biochem., 47, 4 (2012)
Grossman AR, Schaefer MR, Chiang GG, Collier JL, Microbiol. Rev., 57, 3 (1993)
Ladero M, Santos A, Garcia-Ochoa F, Enzyme Microb. Technol., 38(1-2), 1 (2006)
Pang P, Koska J, Coad BR, Brooks DE, Haynes CA, Biotechnol. Bioeng., 90(1), 1 (2005)
Campbell D, Hurry V, Clarke AK, Gustafsson P, Oquist G, Microbiol. Mol. Biol. Rev., 62, 3 (1998)
Govindjee, Shevela D, Front. Plant Sci., 2, 1 (2011)
MacColl R, J. Struct. Biol., 124, 2 (1998)
Glazer A, J. Appl. Phycol., 6, 2 (1994)
Wedemayer GJ, Wemmer DE, Glazer AN, J. Biol. Chem., 266, 8 (1991)
O’Carra P, Murphy RF, Killilea SD, Biochem. J., 187, 2 (1980)
Samsonoff W, MacColl R, Arch. Microbiol., 176, 6 (2001)
Gross W, Schnarrenberger C, Plant Cell Physiol., 36, 4 (1995)
Stec B, Troxler RF, Teeter MM, Biophys. J., 76, 6 (1999)
Adir N, Dobrovetsky Y, Lerner N, J. Mol. Biol., 313, 1 (2001)
Yoshida A, Takagaki Y, Nishimune T, Biosci., Biotechnol., Biochem., 60, 1 (1996)
Brody SS, Brody M, Biochim. Biophys. Acta, 50, 2 (1961)
Graziani G, Schiavo S, Nicolai MA, Buono S, Fogliano V, Pinto G, et al., Food Funct., 4, 1 (2013)
Kronick MN, Grossman PD, Clin. Chem., 29, 9 (1983)
Li B, Gao MH, Zhang XC, Chu XM, Biotechnol. Appl. Biochem., 43, 3 (2006)
Chakdar H, Jadhav SD, Dhar DW, Pabbi S, J. Sci. Ind. Res., 71, 1 (2012)
Mishra SK, Shrivastav A, Mishra S, Process Biochem., 43, 4 (2008)
Spolaore P, Joannis-Cassan C, Duran E, Isambert A, J. Biosci. Bioeng., 101, 2 (2006)
Patel A, Mishra S, Pawar R, Ghosh PK, Protein Exp. Purif., 40, 2 (2005)
Mimuro M, Fuglistaller P, Rumbeli R, Zuber H, Biochim. Biophys. Acta, Bioenergy, 848, 2 (1986)
Lien TS, Wu ST, Yu ST, Too JR, Korean J. Chem. Eng., 24, 5 (2007)
Bennett A, Bogorad L, J. Cell Biol., 58, 2 (1973)
Mishra SK, Shrivastav A, Mishra S, Protein Expression Purif., 80, 2 (2011)
Shevchenko A, Wilm M, Vorm O, Mann M, Anal. Chem., 68, 5 (1996)
Soni B, Kalavadia B, Trivedi U, Madamwar D, Process Biochem., 41, 9 (2006)
Mishra SK, Shrivastav A, Pancha I, Jain D, Mishra S, Int. J. Biol. Macromol., 47, 5 (2010)
Patel A, Mishra S, Pawar R, Ghosh PK, Protein Exp. Purif., 40, 2 (2005)
Santiago-Santos MC, Ponce-Noyola T, Olvera-Ramirez R, Ortega-Lopez J, Canizares-Villanueva RO, Process Biochem., 39, 12 (2004)
Boussiba S, Richmond A, Arch. Microbiol., 120, 2 (1979)
MacColl R, Berns DS, Koven NL, Arch. Biochem. Biophys., 146, 2 (1971)
Olvera-Ramirez R, Coria-Cedillo M, Canizares-Villanueva RO, Martinez-Jeronimo F, Ponce-Noyola T, Rios-Leal E, Bioresour. Technol., 72, 2 (2000)
Chae KJ, Jang A, Yim SK, Kim IS, Bioresour. Technol., 99(1), 1 (2008)
Singh NK, Parmar A, Madamwar D, Bioresour. Technol., 100, 4 (2009)
Brock TD, Genetics, 146, 1 (1997)