Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 10, 2013
Accepted November 3, 2013
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Fabrication and characterization of NiO nanoparticles by precipitation from aqueous solution
Materials and Metallurgical Engineering Department, Advanced Materials Research Center, Sahand University of Technology, Tabriz, Iran
Korean Journal of Chemical Engineering, March 2014, 31(3), 503-508(6), 10.1007/s11814-013-0233-2
Download PDF
Abstract
Present work involves synthesis of NiO nanoparticles using chemical homogeneous precipitation (CHP) method as a facile procedure. Ammonia as a complex agent was used in this method. Effects of different types of complexation-precipitation methods on the crystallinity and morphology of nanoparticles were investigated. NiO particles were prepared by direct precipitation method from NiSO4 solution to compare crystallinity and morphology of NiO particles with particles obtained via complexation-precipitation methods. Our major intent was to investigate the effect of complex agent on the crystallization and growth of NiO nanoparticles. Results showed that the best condition for synthesizing spherical NiO shape was using NaOH as decomposing agent, of which the consequence was more uniformity and spherical nanoparticles with a diameter in the range of 40-60 nm. The size of the nickel oxide and nickel hydroxide nanoparticles was estimated by X-ray powder diffraction (XRD) pattern. The chemical structure information of the particles was studied by Fourier transform infrared (FT-IR) spectroscopy. Spherical, elliptical, sheet or flowerlike shapes were detected by field emission scanning electron microscopy (FESEM) analysis. Results showed that by the use of ammonia as complex agent, crystalline state and particles size distribution of NiO nanoparticles improved.
Keywords
References
Moghaddam J, Kolahgar-Azari S, Karimi S, Ind. Eng. Chem. Res., 51(8), 3224 (2012)
He Y, Vinodgopal K, Ashokkumar M, Grieser F, Res. Chem. Intermed., 32, 709 (2006)
Kassab RM, Jackson KT, El-Kadri OM, El-Kaderi HM, Res. Chem. Intermed., 37, 747 (2011)
Adler D, Feinleib JJ, Phys. Rev. B: Condens. Matter, 2, 3112 (1970)
Hotovy I, Huran J, Spiess L, Hascik S, Tehacek V, Sens. Actuators, B, 57, 147 (1999)
Miller EL, Rocheleau RE, J. Electrochem. Soc., 144(9), 3072 (1997)
Wang YP, Zhu JW, Yang XJ, Lu LD, Wang X, Thermochim. Acta, 437(1-2), 106 (2005)
Makkus RC, Hemmes K, Wir JHWD, J. Electrochem. Soc., 141, 3429 (1994)
Ghosh M, Biswas K, Sundaresan A, Rao CNR, J. Mater. Chem., 16, 106 (2006)
Wang X, Ye LJ, Hu P, Yuan FL, Cryst. Growth Des., 7, 2415 (2007)
Huang CN, Chen SY, Shen P, J. Phys. Chem. C, 111, 3322 (2007)
Zhao B, Ke XK, Bao JH, J. Phys. Chem. C, 113, 14440 (2009)
Wu MS, Hsieh HH, Electrochim. Acta, 53(8), 3427 (2008)
Sietsma JRA, Meeldijk JD, Breejen JPD, Helder MV, Dillen AJV, Jongh PED, Jong KPD, Angew. Chem. Int. Ed., 46, 4547 (2007)
Yang LX, Zhu YJ, Tong H, Liang ZH, Li L, Zhang LJ, J. Solid State Chem., 180, 2095 (2007)
Xu CK, Hong KQ, Liu S, Wang GH, Zhao XN, J. Cryst. Growth, 255(3-4), 308 (2003)
Wu LL, Wu YS, Wei HY, Shi YC, Hu CX, Mater. Lett., 58, 2700 (2004)
Zheng MB, Cao JM, Chen YP, Ma XJ, Deng SG, Tao J, Chem. Lett., 34(8), 1174 (2005)
Xing W, Li F, Yan ZF, Cheng HM, Lu GQ, Int. J. Nanosci., 3, 321 (2004)
Liu XM, Zhang XG, Fu SY, Mater. Res. Bull., 41(3), 620 (2006)
Bai LY, Yuan FL, Hu P, Yan SK, Wang X, Li SH, Mater. Lett., 61, 1698 (2007)
Ni X, Zhang Y, Tian D, Zheng H, Wang X, J. Cryst. Growth, 306(2), 418 (2007)
Al-Hajry A, Umar A, Vaseem M, Al-Assiri MS, Superlattices Microstruct., 44, 216 (2008)
Zhu LP, Liao GH, Yang Y, Zhao HM, Wang JG, Nanoscale Res. Lett., 4, 550 (2009)
Wang HZ, Qian YT, Cryst. Res. Technol., 45, 545 (2010)
Hotovy I, Rehacek V, Siciliano P, Capone S, Spiess L, Thin Solid Films, 418(1), 9 (2002)
Kim TY, Kim JY, Lee SH, Shim HW, Lee SH, Su EK, Nahm KS, Synthetic Met., 144, 61 (2004)
Li F, Chen HY, Wang CM, Hu KA, J. Electroanal. Chem., 531(1), 53 (2002)
Needham SA, Wang GX, Liu HK, J. Power Sources, 159(1), 254 (2006)
Gondal MA, Sayeed MN, Seddigi Z, J. Hazard. Mater., 155(1-2), 83 (2008)
Cossins BP, Foucher S, Edge CM, Essex JW, J. Phys. Chem. B, 113(16), 5508 (2009)
Yang Q, Sha J, Maa X, Yang D, Mater. Lett., 59, 1967 (2005)
Salavati-Niasari M, Mir N, Davar F, J. Alloy. Compd., 493, 163 (2010)
Plashnitsa VV, Gupta V, Miura N, Electrochim. Acta, 65, 6941 (2010)
Deng XY, Chen Z, Mater. Lett., 58, 276 (2004)
Kamath PV, Subbanna GN, J. Appl. Electrochem., 22, 478 (1992)
Wei Z, Qiao H, Yang H, Zhang C, Yan X, J. Alloy. Compd., 479, 855 (2009)
Cullity BD, Elements of X-ray diffraction, First Ed., Addison Wesley, Massachusetts (1956)
Paola AD, Garcia-Lopez E, Marci G, Palmisano L, J. Hazard. Mater., 211-212, 3 (2012)
Song QS, Li YY, Chan SLI, J. Appl. Electrochem., 35, 157 (2005)
Xu CK, Hong KQ, Liu S, Wang GH, Zhao XN, J. Cryst. Growth, 255(3-4), 308 (2003)
He Y, Vinodgopal K, Ashokkumar M, Grieser F, Res. Chem. Intermed., 32, 709 (2006)
Kassab RM, Jackson KT, El-Kadri OM, El-Kaderi HM, Res. Chem. Intermed., 37, 747 (2011)
Adler D, Feinleib JJ, Phys. Rev. B: Condens. Matter, 2, 3112 (1970)
Hotovy I, Huran J, Spiess L, Hascik S, Tehacek V, Sens. Actuators, B, 57, 147 (1999)
Miller EL, Rocheleau RE, J. Electrochem. Soc., 144(9), 3072 (1997)
Wang YP, Zhu JW, Yang XJ, Lu LD, Wang X, Thermochim. Acta, 437(1-2), 106 (2005)
Makkus RC, Hemmes K, Wir JHWD, J. Electrochem. Soc., 141, 3429 (1994)
Ghosh M, Biswas K, Sundaresan A, Rao CNR, J. Mater. Chem., 16, 106 (2006)
Wang X, Ye LJ, Hu P, Yuan FL, Cryst. Growth Des., 7, 2415 (2007)
Huang CN, Chen SY, Shen P, J. Phys. Chem. C, 111, 3322 (2007)
Zhao B, Ke XK, Bao JH, J. Phys. Chem. C, 113, 14440 (2009)
Wu MS, Hsieh HH, Electrochim. Acta, 53(8), 3427 (2008)
Sietsma JRA, Meeldijk JD, Breejen JPD, Helder MV, Dillen AJV, Jongh PED, Jong KPD, Angew. Chem. Int. Ed., 46, 4547 (2007)
Yang LX, Zhu YJ, Tong H, Liang ZH, Li L, Zhang LJ, J. Solid State Chem., 180, 2095 (2007)
Xu CK, Hong KQ, Liu S, Wang GH, Zhao XN, J. Cryst. Growth, 255(3-4), 308 (2003)
Wu LL, Wu YS, Wei HY, Shi YC, Hu CX, Mater. Lett., 58, 2700 (2004)
Zheng MB, Cao JM, Chen YP, Ma XJ, Deng SG, Tao J, Chem. Lett., 34(8), 1174 (2005)
Xing W, Li F, Yan ZF, Cheng HM, Lu GQ, Int. J. Nanosci., 3, 321 (2004)
Liu XM, Zhang XG, Fu SY, Mater. Res. Bull., 41(3), 620 (2006)
Bai LY, Yuan FL, Hu P, Yan SK, Wang X, Li SH, Mater. Lett., 61, 1698 (2007)
Ni X, Zhang Y, Tian D, Zheng H, Wang X, J. Cryst. Growth, 306(2), 418 (2007)
Al-Hajry A, Umar A, Vaseem M, Al-Assiri MS, Superlattices Microstruct., 44, 216 (2008)
Zhu LP, Liao GH, Yang Y, Zhao HM, Wang JG, Nanoscale Res. Lett., 4, 550 (2009)
Wang HZ, Qian YT, Cryst. Res. Technol., 45, 545 (2010)
Hotovy I, Rehacek V, Siciliano P, Capone S, Spiess L, Thin Solid Films, 418(1), 9 (2002)
Kim TY, Kim JY, Lee SH, Shim HW, Lee SH, Su EK, Nahm KS, Synthetic Met., 144, 61 (2004)
Li F, Chen HY, Wang CM, Hu KA, J. Electroanal. Chem., 531(1), 53 (2002)
Needham SA, Wang GX, Liu HK, J. Power Sources, 159(1), 254 (2006)
Gondal MA, Sayeed MN, Seddigi Z, J. Hazard. Mater., 155(1-2), 83 (2008)
Cossins BP, Foucher S, Edge CM, Essex JW, J. Phys. Chem. B, 113(16), 5508 (2009)
Yang Q, Sha J, Maa X, Yang D, Mater. Lett., 59, 1967 (2005)
Salavati-Niasari M, Mir N, Davar F, J. Alloy. Compd., 493, 163 (2010)
Plashnitsa VV, Gupta V, Miura N, Electrochim. Acta, 65, 6941 (2010)
Deng XY, Chen Z, Mater. Lett., 58, 276 (2004)
Kamath PV, Subbanna GN, J. Appl. Electrochem., 22, 478 (1992)
Wei Z, Qiao H, Yang H, Zhang C, Yan X, J. Alloy. Compd., 479, 855 (2009)
Cullity BD, Elements of X-ray diffraction, First Ed., Addison Wesley, Massachusetts (1956)
Paola AD, Garcia-Lopez E, Marci G, Palmisano L, J. Hazard. Mater., 211-212, 3 (2012)
Song QS, Li YY, Chan SLI, J. Appl. Electrochem., 35, 157 (2005)
Xu CK, Hong KQ, Liu S, Wang GH, Zhao XN, J. Cryst. Growth, 255(3-4), 308 (2003)