ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received October 5, 2013
Accepted December 16, 2013
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Water droplet dynamic behavior during removal from a proton exchange membrane fuel cell gas diffusion layer by Lattice-Boltzmann method

Center for Fuel Cell Research, School of Mechanical Engineering, Shiraz University, Shiraz 71348-51154, Iran
h-akbari@shirazu.ac.ir
Korean Journal of Chemical Engineering, April 2014, 31(4), 598-610(13), 10.1007/s11814-013-0282-6
downloadDownload PDF

Abstract

A major challenge in the application of proton exchange membrane fuel cells (PEMFCs) is water management, with the flooding of electrodes as the main issue. The Lattice-Boltzmann method (LBM) is a relatively new technique that is superior in modeling the dynamic interface of multiphase fluid flow in complex microstructures such as non-homogeneous and anisotropic porous media of PEMFC electrodes. In this study, the dynamic behavior of a water droplet during removal from gas diffusion layer (GDL) of a PEMFC electrode with interdigitated flow field is simulated using LBM. The effects of GDL wettability and its spanwise and transverse gradients on the removal process are investigated. The results demonstrate great influence of wettability and its spanwise and transverse gradients on the dynamic behavior of droplets during the removal process. Although increasing the hydrophobicity of GDL results in better droplet removal,_x000D_ its increase beyond a critical value does not show a significant effect.

References

Yang TH, Park GG, Pugazhendhi P, Lee WY, Kim CS, Korean J. Chem. Eng., 19(3), 417 (2002)
Dawes JE, Hanspal NS, Family OA, Turan A, Chem. Eng. Sci., 64(12), 2781 (2009)
Jiao K, Li X, Prog. Energy Combust. Sci., 37, 221 (2011)
Wang Y, Chen KS, Mishler J, Cho SC, Adroher XC, Appl. Energy, 88(4), 981 (2011)
Khan MA, Sunden B, Yuan JL, J. Power Sources, 196(19), 7899 (2011)
Succi S, The lattice boltzmann equation for fluid dynamics and beyond numerical mathematics and scientific computation, Clarendon Press, Oxford (2001)
Gao Y, Zhang X, Rama P, Chen R, Ostadi H, Jiang K, Comput. Math. Appl., 65, 891 (2013)
Hao L, Cheng P, J. Power Sources, 195(12), 3870 (2010)
Hao L, Cheng P, Int. J. Heat Mass Transf., 53(9-10), 1908 (2010)
Hao L, Cheng P, Int. J. Heat Mass Transfer, 55, 133 (2011)
Koido T, Furusawa T, Moriyama K, J. Power Sources, 175(1), 127 (2008)
Mukherjee PP, Wang CY, Kang QJ, Electrochim. Acta, 54(27), 6861 (2009)
Niu XD, Munekata T, Hyodo SA, Suga K, J. Power Sources, 172(2), 542 (2007)
Tabe Y, Lee YJ, Chikahisa T, Kozakai M, J. Power Sources, 193(1), 24 (2009)
Ben Salah Y, Tabe Y, Chikahisa Y, J. Power Sources, 199, 85 (2012)
Ben Salah Y, Tabe Y, Chikahisa Y, Energy Procedia, 28, 125 (2012)
Chen L, Luan HB, He YL, Tao WQ, Int. J. Therm. Sci., 5, 132 (2012)
Han B, Meng H, J. Power Sources, 217, 268 (2012)
Han B, Yu J, Meng H, J. Power Sources, 202, 175 (2012)
Hao L, Cheng P, J. Power Sources, 190(2), 435 (2009)
Park J, Li X, J. Power Sources, 178(1), 248 (2008)
Nam JH, Kaviany M, Int. J. Heat Mass Transf., 46(24), 4595 (2003)
Zhang FY, Yang XG, Wang CY, J. Electrochem. Soc., 153, 225 (2006)
Mench MM, Fuel Cell Engines, Wiley, New Jersey (2008)
Daino MM, Kandlikar SG, Int. J. Hydrog. Energy, 37, 5180 (2012)
Zhou P, Wu CW, J. Power Sources, 195(5), 1408 (2010)
Sinha PK, Wang CY, Electrochim. Acta, 52(28), 7936 (2007)
Sinha PK, Wang CY, Chem. Eng. Sci., 63(4), 1081 (2008)
Chen S, Doolen GD, Annu. Rev. Fluid. Mech., 30, 329 (1998)
Shan X, Chen H, Phys. Rev. E, 47, 1815 (1993)
Bhatnagar PL, Gross EP, Krook M, Phys. Rev., 94, 511 (1954)
Gunstensen AK, Rothman DH, Zaleski S, Zanetti G, Phys. Rev. A, 43, 4320 (1991)
Swift MR, Osborn WR, Yeomans JM, Phys. Rev. Lett., 75, 830 (1995)
Mohamad AA, Lattice boltzmann method-fundamentals and engineering applications with computer codes, Springer, Heidelberg (2011)
Sukop MC, Thorne DT, Lattice boltzmann modeling, an introduction for geoscientists and engineers, Springer, Heidelberg (2007)
Yuan P, Schaefer L, Phys. Fluids, 18, 042101 (2006)
Nguyen TV, J. Electrochem. Soc., 143, 103 (1996)
Zou Q, He X, Phys. Fluids, 9, 1591 (1997)
Kumbur EC, Sharp KV, Mench MM, J. Power Sources, 168(2), 356 (2007)
Velayutham G, Kaushik J, Rajalakshmi N, Dhathathreyan KS, Fuel Cells, 7, 314 (2007)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로