Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received May 21, 2013
Accepted November 26, 2013
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Oxygen transfer to cassava starch solutions in an aerated, well-mixed bioreactor: Experimental and mass transfer studies
1Department of Chemical Engineering, National Institute of Technology (ITENAS), Jl. PHH. Mustafa No. 23, Bandung 40124, Indonesia 2Department of Chemical and Petroleum Engineering, Curtin University Sarawak Campus, CDT 250, 98009 Miri, Sarawak, Malaysia
saptoroa@itenas.ac.id, agussaptorophd@gmail.com
Korean Journal of Chemical Engineering, April 2014, 31(4), 650-658(9), 10.1007/s11814-013-0251-0
Download PDF
Abstract
Experimental and mass transfer studies of oxygen transfer to cassava starch solution in an aerated, wellmixed bioreactor of 2 L have been carried out. The volumetric mass transfer coefficient was estimated and parametric studies were performed to study the effect of process variables of stirring rate, aeration rate, concentration of starch and temperature on the volumetric mass transfer coefficient. From the experimental results, it is evident that the first two and the last variables are directly proportional to the volumetric mass transfer coefficient. However, the volumetric mass transfer coefficient is inversely proportional to the concentration of the starch. Also, the saturation dissolved oxygen concentration is greatly affected by temperature and starch solution concentration. Whereas, stirring and aeration rates have neutral impacts on saturation dissolved oxygen concentration. Simulated data generated from obtained volumetric mass transfer coefficient agrees well with the experimental data, which indicates the accuracy of the coefficient.
References
Mojovic L, Pejin D, Rakin M, Pejin J, Nikolic S, Djukic-Vukovic A, Renewable and Sustainable Energy Rev., 16, 6040 (2012)
Talebnia F, Karakashev D, Angelidaki I, Bioresour. Technol., 101(13), 4744 (2010)
Abashar MEE, Comput. Chem. Eng., 37, 172 (2012)
Balat M, Balat H, Oz C, Prog. Energy Combust. Sci., 34, 551 (2008)
Gray KA, Zhao L, Emptage M, Curr. Opin. Chem. Biol., 10, 141 (2006)
Demirbas A, Energy Conv. Manag., 50(9), 2239 (2009)
Hashem M, Darwish SMI, Biomass Bioenerg., 34(7), 953 (2010)
Furlan FF, Costa CBB, Fonseca GdC, Soares RdP, Secchi AR, da Cruz AJG, Giordano RdC, Comput. Chem. Eng., 43, 1 (2012)
Njoku SI, Ahring BK, Uellendahl H, Bioresour. Technol., 124, 105 (2012)
Dias MOS, Ensinas AV, Nebra SA, Maciel R, Rossell CEV, Maciel MRW, Chem. Eng. Res. Des., 87(9A), 1206 (2009)
Limayem A, Ricke SC, Prog. Energy Combust. Sci., 38, 449 (2012)
Virunanon C, Ouephanit C, Burapatana V, Chulalaksananukul W, J. Cleaner Prod., 39, 273 (2013)
Panaka P, Yudiarto A, New development of ethanol industry in indonesia, Asian Science & Technology Seminar, Jakarta (2007)
Sumaryono W, Technology development in bioethanol production in indonesia, The Asian Science and Technology Seminar, Jakarta (2007)
Silalertruksa T, Gheewala SH, Energy Policy, 38(11), 7476 (2010)
Sriroth K, Piyachomkwan K, Wanlapatit S, Nivitchanyong S, Fuel, 89(7), 1333 (2010)
Shanavas S, Padmaja G, Moorthy SN, Sajeev MS, Sheriff JT, Biomass Bioenerg., 35(2), 901 (2011)
Ziska LH, Runion GB, Tomecek M, Prior SA, Torbet HA, Sicher R, Biomass Bioenerg., 33(11), 1503 (2009)
Aggarwal NK, Nigam P, Singh D, Yadav BS, World J. Microbiol. Biotechnol., 17, 783 (2001)
Ohimain EI, Energy Sustainable Dev., 16, 352 (2012)
Zamora LL, Calderon JAG, Vazquez ET, Reynoso EB, J. Mex. Chem. Soc., 54(4), 198 (2010)
Collares RM, Miklasevicius LVS, Bassaco MM, Salau NPG, Mazutti MA, Bisognin DA, Terra LM, J. Zhejiang Univ., Sci., B, 13(7), 579 (2012)
Kuiper L, Ekmekci B, Hamelinck C, Hettinga W, Meyer S, Koop K, Bio-ethanol from cassava, EcofysProject number: PBIONL062937 (2007)
Dai D, Hu ZY, Pu GQ, Li H, Wang CT, Energy Conv. Manag., 47(13-14), 1686 (2006)
Zhang C, Han W, Jing X, Pu G, Wang C, Renewable and Sustainable Energy Rev., 7(4), 353 (2003)
Ochoa FG, Gumez E, Biochem. Eng. J., 1, 1 (1998)
Ozbek B, Gayik S, Process Biochem., 36, 729 (2001)
Vogelaar JCT, Klapwijk A, Van Lier JB, Rulkens WH, Water. Res., 34, 1037 (2000)
Gomez-Diaz D, Gomes N, Teixeira JA, Belo I, Chem. Eng. J., 152(2-3), 354 (2009)
Hill GA, Ind. Eng. Chem. Res., 48(7), 3696 (2009)
Scargiali F, Busciglio A, Grisafi F, Brucato A, Biochem. Eng. J., 49, 165 (2010)
Chern JM, Chou SR, Shang CS, Water. Res., 35, 3041 (2001)
Marques DdAV, Torres BR, Porto ALF, Junior AP, Converti A, Biochem. Eng. J., 47(1-3), 122 (2009)
Jamnongwong M, Loubiere K, Dietrich N, Hebrard G, Chem. Eng. J., 165(3), 758 (2010)
Chern JM, Yu CF, Ind. Eng. Chem. Res., 36(12), 5447 (1997)
Hejiang S, Le H, YunXia Z, Study on oxygen transfer model in an aerobic granule-based sequencing batch reactor, Proceedings of the 3rd International Conference on Bioinformatics and Biomedical Engineering (ICBBE), 1 (2009)
Adoua R, Mietton-Peuchot M, Milisic V, Chem. Eng. Sci., 65(20), 5455 (2010)
Martin M, Montes FJ, Galan MA, Chem. Eng. J., 145(2), 232 (2008)
Lancia A, Musmarra D, Pepe F, Prisciandaro M, Chem. Eng. J., 66, 123 (1997)
Lines PC, Trans IchemE, 78(Part A), 342 (2000)
Mineta R, Salehi Z, Yoshikawa H, Kawase Y, Biochem. Eng. J., 53, 266 (2011)
Linek V, Kordac M, Moucha T, Chem. Eng. Process., 44(1), 121 (2005)
Puthli MS, Rathod VK, Pandit AB, Biochem. Eng. J., 23, 25 (2005)
RH Perry, DW Green, JO Maloney, Perry’s Chemical Engineers’ Handbook, 7th Ed., McGraw-Hill, New York (1999)
Adebowale ARA, Sanni LO, J. Food Sci. Technol., 50, 573 (2013)
Che LM, Li D, Wang LJ, Ozkan N, Chen XD, Mao ZH, Carbohyd. Polym., 74, 385 (2008)
Chen L, Chi ZM, Chi Z, Li M, Appl. Biochem. Biotechnol., 162(1), 252 (2010)
Zhang J, Fang Z, Deng H, Zhang X, Bao J, Bioresour. Technol., 134, 298 (2013)
Shanavas S, Padmaja G, Moorthy SN, Sajeev MS, Sheriff JT, Biomass Bioenerg., 35(2), 901 (2011)
Ghaly AE, Kok R, Appl. Biochem. Biotechnol., 19, 259 (1988)
Stukenberg JR, Wahbeh VN, McKinney RE, J. Water Control Fed., 49, 66 (1977)
Zhao B, Li Y, Tong HL, Zhuo YQ, Zhang L, Shi H, Chen CH, Chem. Eng. Sci., 60(3), 863 (2005)
Garcia-Ochoa F, Gomez E, Biotechnol. Adv., 27, 153 (2009)
Chern JM, Yang SP, Ind. Eng. Chem. Res., 42(25), 6653 (2003)
Geankoplis CJ, Transport process and separation process principles, 4th Ed., Prentice Hall (2003)
Downing AL, Truesdale GA, J. Appl. Chem., 5, 570 (1955)
Elmore HL, West WF, J. Sanit. Eng. Div. Am. Soc. Civ. Eng., 87, 59 (1961)
Metzger I, Dobbins WE, Environ. Sci. Technol., 1, 57 (1967)
Bewtra JK, Nicholas WR, Polkowski LB, Water Res., 4, 115 (1970)
Lakin MB, Salzman RN, J. Water Pollut. Control Fed., 51, 2419 (1979)
Talebnia F, Karakashev D, Angelidaki I, Bioresour. Technol., 101(13), 4744 (2010)
Abashar MEE, Comput. Chem. Eng., 37, 172 (2012)
Balat M, Balat H, Oz C, Prog. Energy Combust. Sci., 34, 551 (2008)
Gray KA, Zhao L, Emptage M, Curr. Opin. Chem. Biol., 10, 141 (2006)
Demirbas A, Energy Conv. Manag., 50(9), 2239 (2009)
Hashem M, Darwish SMI, Biomass Bioenerg., 34(7), 953 (2010)
Furlan FF, Costa CBB, Fonseca GdC, Soares RdP, Secchi AR, da Cruz AJG, Giordano RdC, Comput. Chem. Eng., 43, 1 (2012)
Njoku SI, Ahring BK, Uellendahl H, Bioresour. Technol., 124, 105 (2012)
Dias MOS, Ensinas AV, Nebra SA, Maciel R, Rossell CEV, Maciel MRW, Chem. Eng. Res. Des., 87(9A), 1206 (2009)
Limayem A, Ricke SC, Prog. Energy Combust. Sci., 38, 449 (2012)
Virunanon C, Ouephanit C, Burapatana V, Chulalaksananukul W, J. Cleaner Prod., 39, 273 (2013)
Panaka P, Yudiarto A, New development of ethanol industry in indonesia, Asian Science & Technology Seminar, Jakarta (2007)
Sumaryono W, Technology development in bioethanol production in indonesia, The Asian Science and Technology Seminar, Jakarta (2007)
Silalertruksa T, Gheewala SH, Energy Policy, 38(11), 7476 (2010)
Sriroth K, Piyachomkwan K, Wanlapatit S, Nivitchanyong S, Fuel, 89(7), 1333 (2010)
Shanavas S, Padmaja G, Moorthy SN, Sajeev MS, Sheriff JT, Biomass Bioenerg., 35(2), 901 (2011)
Ziska LH, Runion GB, Tomecek M, Prior SA, Torbet HA, Sicher R, Biomass Bioenerg., 33(11), 1503 (2009)
Aggarwal NK, Nigam P, Singh D, Yadav BS, World J. Microbiol. Biotechnol., 17, 783 (2001)
Ohimain EI, Energy Sustainable Dev., 16, 352 (2012)
Zamora LL, Calderon JAG, Vazquez ET, Reynoso EB, J. Mex. Chem. Soc., 54(4), 198 (2010)
Collares RM, Miklasevicius LVS, Bassaco MM, Salau NPG, Mazutti MA, Bisognin DA, Terra LM, J. Zhejiang Univ., Sci., B, 13(7), 579 (2012)
Kuiper L, Ekmekci B, Hamelinck C, Hettinga W, Meyer S, Koop K, Bio-ethanol from cassava, EcofysProject number: PBIONL062937 (2007)
Dai D, Hu ZY, Pu GQ, Li H, Wang CT, Energy Conv. Manag., 47(13-14), 1686 (2006)
Zhang C, Han W, Jing X, Pu G, Wang C, Renewable and Sustainable Energy Rev., 7(4), 353 (2003)
Ochoa FG, Gumez E, Biochem. Eng. J., 1, 1 (1998)
Ozbek B, Gayik S, Process Biochem., 36, 729 (2001)
Vogelaar JCT, Klapwijk A, Van Lier JB, Rulkens WH, Water. Res., 34, 1037 (2000)
Gomez-Diaz D, Gomes N, Teixeira JA, Belo I, Chem. Eng. J., 152(2-3), 354 (2009)
Hill GA, Ind. Eng. Chem. Res., 48(7), 3696 (2009)
Scargiali F, Busciglio A, Grisafi F, Brucato A, Biochem. Eng. J., 49, 165 (2010)
Chern JM, Chou SR, Shang CS, Water. Res., 35, 3041 (2001)
Marques DdAV, Torres BR, Porto ALF, Junior AP, Converti A, Biochem. Eng. J., 47(1-3), 122 (2009)
Jamnongwong M, Loubiere K, Dietrich N, Hebrard G, Chem. Eng. J., 165(3), 758 (2010)
Chern JM, Yu CF, Ind. Eng. Chem. Res., 36(12), 5447 (1997)
Hejiang S, Le H, YunXia Z, Study on oxygen transfer model in an aerobic granule-based sequencing batch reactor, Proceedings of the 3rd International Conference on Bioinformatics and Biomedical Engineering (ICBBE), 1 (2009)
Adoua R, Mietton-Peuchot M, Milisic V, Chem. Eng. Sci., 65(20), 5455 (2010)
Martin M, Montes FJ, Galan MA, Chem. Eng. J., 145(2), 232 (2008)
Lancia A, Musmarra D, Pepe F, Prisciandaro M, Chem. Eng. J., 66, 123 (1997)
Lines PC, Trans IchemE, 78(Part A), 342 (2000)
Mineta R, Salehi Z, Yoshikawa H, Kawase Y, Biochem. Eng. J., 53, 266 (2011)
Linek V, Kordac M, Moucha T, Chem. Eng. Process., 44(1), 121 (2005)
Puthli MS, Rathod VK, Pandit AB, Biochem. Eng. J., 23, 25 (2005)
RH Perry, DW Green, JO Maloney, Perry’s Chemical Engineers’ Handbook, 7th Ed., McGraw-Hill, New York (1999)
Adebowale ARA, Sanni LO, J. Food Sci. Technol., 50, 573 (2013)
Che LM, Li D, Wang LJ, Ozkan N, Chen XD, Mao ZH, Carbohyd. Polym., 74, 385 (2008)
Chen L, Chi ZM, Chi Z, Li M, Appl. Biochem. Biotechnol., 162(1), 252 (2010)
Zhang J, Fang Z, Deng H, Zhang X, Bao J, Bioresour. Technol., 134, 298 (2013)
Shanavas S, Padmaja G, Moorthy SN, Sajeev MS, Sheriff JT, Biomass Bioenerg., 35(2), 901 (2011)
Ghaly AE, Kok R, Appl. Biochem. Biotechnol., 19, 259 (1988)
Stukenberg JR, Wahbeh VN, McKinney RE, J. Water Control Fed., 49, 66 (1977)
Zhao B, Li Y, Tong HL, Zhuo YQ, Zhang L, Shi H, Chen CH, Chem. Eng. Sci., 60(3), 863 (2005)
Garcia-Ochoa F, Gomez E, Biotechnol. Adv., 27, 153 (2009)
Chern JM, Yang SP, Ind. Eng. Chem. Res., 42(25), 6653 (2003)
Geankoplis CJ, Transport process and separation process principles, 4th Ed., Prentice Hall (2003)
Downing AL, Truesdale GA, J. Appl. Chem., 5, 570 (1955)
Elmore HL, West WF, J. Sanit. Eng. Div. Am. Soc. Civ. Eng., 87, 59 (1961)
Metzger I, Dobbins WE, Environ. Sci. Technol., 1, 57 (1967)
Bewtra JK, Nicholas WR, Polkowski LB, Water Res., 4, 115 (1970)
Lakin MB, Salzman RN, J. Water Pollut. Control Fed., 51, 2419 (1979)