ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received June 24, 2013
Accepted December 8, 2013
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Modeling and simulation of breakthrough curves during purification of two chitosanases from Metarhizium anisopliae using ion-exchange with expanded bed adsorption chromatography

1Northeast Biotechnology Network (RENORBIO), Technology and Research Institute (ITP), Tiradentes University (UNIT), Biomaterial Laboratory (LBMAT), Aracaju/SE, Av. Murilo Dantas 300,Farolândia, Aracaju/SE, 49032-490, Brazil 2Biochemical Engineering Laboratory, Department of Chemical Engineering, Federal University of Rio Grande do Norte (UFRN), Natal/RN, 59072-970, Brazil 3Northeast Biotechnology Network (RENORBIO), Tiradentes University (UNIT), Aracaju/SE, Brazil 4Technology and Research Institute (ITP), Biomaterial Laboratory (LBMAT), Av. Murilo Dantas 300,Farolândia, Aracaju/SE, 49032-490, Brazil
everaldo@eq.ufrn.br
Korean Journal of Chemical Engineering, April 2014, 31(4), 684-691(8), 10.1007/s11814-013-0269-3
downloadDownload PDF

Abstract

A mathematical model was developed to predict breakthrough curves during purification of the two chitosanases from Metarhizium anisopliae by expanded bed adsorption, taking into account the axial dispersion of liquid and using Streamline DEAE and SP XL adsorbents, anion and cation exchange resins, respectively. All the experiments were performed without clarification (with cells) aiming at the reduction of unit operations in future projects of separation processes, thereby reducing capital and operating costs. Chitosanases are enzymes that hydrolyze the carbohydrate chitosan, resulting in oligosaccharides that have many remarkable biological activities, such as anti-cancer, anti-HIV and antioxidant activities. The two adsorbents had similar performance in relation to hydrodynamics and mass transfer. The results of the parametric sensitivity analysis agree with the literature, and the model was validated with an average high degree of fit (94.68%) between simulated and experimental data obtained in this work.

References

Mollerup JM, Hansen TB, Kidal S, Staby A, J. Chromatogr. A, 1177(2), 200 (2008)
Yap WB, Tey BT, Alitheen NBM, Tan WS, J. Chromatogr. A, 1217, 3473 (2010)
Zhao J, Yao SJ, Lin DQ, Chin. J. Chem. Eng., 17(4), 678 (2009)
Moraes CC, Mazutti MA, Rodrigues MI, Filho FM, Kalil SJ, J. Chromatogr. A, 1216, 4395 (2009)
Rojas EEG, Coimbra JSR, Minim LA, Saraiva SRH, Silva CSAS, J. Chromatogr. B, 840(2), 85 (2006)
Padilha GS, Curvelo-Santana JC, Alegre RM, Tambourgi EB, J. Chromatogr. B, 877(5-6), 521 (2009)
Pinotti LM, Fonseca LP, Prazeres DMF, Rodrigues DS, Nucci ER, Giordano RLC, Biochem. Eng. J., 44, 111 (2009)
Hidayat C, Takagi M, Yoshida T, J. Biosci. Bioeng., 97(4), 284 (2004)
Santos ES, Guirardello R, Franco TT, J. Chromatogr. A, 944(1-2), 217 (2002)
Chen X, Xia W, Yu X, Food Res. Internat., 38, 315 (2005)
Santi L, Silva WOBd, Berger M, Guimaraes JA, Schrank A, Vainstein MH, Toxicon, 55, 874 (2010)
Assis CF, Araujo N, Pagnoncelli M, Pedrini MS, Macedo GR, Santos ES, Bioproc. Biosys. Eng., 33(7), 893 (2010)
Wang J, Zhou W, Yuan H, Wang Y, Carbohyd. Res., 343, 2583 (2008)
Xia W, Liu P, Zhang J, Chen J, Food Hydrocol., 25, 170 (2011)
Shen KT, Chen MH, Chan HY, Jeng JH, Wang YJ, Food Chem. Toxicol., 47, 1864 (2009)
Artan M, Karadeniz F, Karagozlu MZ, Kim MM, Kim SK, Carbohyd. Res., 345, 656 (2010)
Senevirathne M, Ahn CB, Je JY, Carbohyd. Polym., 83(2), 995 (2011)
Ngo DH, Qian ZJ, Vo TS, Ryu B, Ngo DN, Kim SK, Carbohyd. Polym., 88(2), 743 (2012)
Fan LT, Yang YC, Wen CY, AIChE J., 6, 482 (1960)
Veeraraghavan S, Fan LT, Mathews AP, Chem. Eng. Sci., 44, 2333 (1989)
Thelen TV, Ramirez WF, Chem. Eng. Sci., 52(19), 3333 (1997)
Wright PR, Glasser BJ, AIChE J., 47(2), 474 (2001)
Li P, Xiu GH, Rodrigues AE, AIChE J., 51(11), 2965 (2005)
El-Sayed MMH, Chase HA, Biochem. Eng. J., 49, 221 (2010)
Bruce LJ, Clemmitt RH, Nash DC, Chase HA, J. Chem. Technol. Biotechnol., 74(3), 264 (1999)
Gardner PJ, Willoughby N, Hjorth R, Lacki K, Titchener-Hooker NJ, Biotechnol. Bioeng., 87(3), 347 (2004)
Tong XD, Xue B, Sun Y, Biochem. Eng. J., 16, 365 (2003)
Levenspiel O, Chemical reaction engineering, Wiley, New York (1999)
Li S, Petzold L, Zhu W, Appl. Num. Mathemat., 32, 161 (2000)
Mollerup JM, Hansen TB, Kidal S, Sejergaard L, Staby A, Fluid Phase Equilib., 261(1-2), 133 (2007)
Yun J, Lin DQ, Yao SJ, J. Chromatogr. A, 1095, 16 (2005)
Conrado LS, Veredas V, Nobrega ES, Santana CC, Braz. J. Chem. Eng., 22, 501 (2005)
Kunii D, Levenspiel O, Fluidization engineering, Robert E. Krieger Publishing Company, New York (1977)
Nagrath D, Xia F, Cramer SM, J. Chromatogr. A, 1218, 1219 (2011)
Chang YK, Chase HA, Biotechnol. Bioeng., 49(5), 512 (1996)
Gritti F, Guiochon G, J. Chromatogr. A, 1218, 3476 (2011)
Karau A, Benken C, Thommes J, Kula MR, Biotechnol. Bioeng., 55(1), 54 (1997)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로