Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received September 4, 2013
Accepted November 27, 2013
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Enhancing lipid productivity of Chlorella vulgaris using oxidative stress by TiO2 nanoparticles
Nam Kyu Kang1
Bongsoo Lee1
Gang-Guk Choi1
Myounghoon Moon1
Min S. Park1 2
JitKang Lim3
Ji-Won Yang1 2†
1Department of Chemical and Biomolecular Engineering, KAIST, 291, Daehak-ro, Yuseong-gu, Daejeon 305-701, Korea 2Advanced Biomass R&D Center, KAIST, 291, Daehak-ro, Yuseong-gu, Daejeon 305-701, Korea 3School of Chemical Engineering, Universiti Sains Malaysia, Nibong Tebal 14213, Penang, Malaysia
Korean Journal of Chemical Engineering, May 2014, 31(5), 861-867(7), 10.1007/s11814-013-0258-6
Download PDF
Abstract
Ability to increase the lipid production in microalgae is one of the heavily sought-after ideas to improve the economic feasibility of microalgae-derived transportation fuels for commercial applications. We used the oxidative stress by TiO2 nanoparticles, a well-known photocatalyst, to induce lipid production in microalgae. Chlorella vulgaris UTEX 265 was cultivated under various concentrations of TiO2 ranging from 0.1 to 5 g/L under UV-A illumination. Maximum specific growth rate was affected in responding to TiO2 concentrations. In the presence of UV-A, chlorophyll concentration was decreased at the highest concentration of TiO2 (5 g/L TiO2) by oxidative stress. The fatty acid methyl ester (FAME) composition analysis suggested that oxidative stress causes the accumulation and decomposition of lipids. The highest FAME productivity was 18.2 g/L/d under low concentrations of TiO2 (0.1 g/L) and a short induction time_x000D_
(two days). The controlled condition of TiO2/UV-A inducing oxidative stress (0.1 g/L TiO2 and two days induction) could be used to increase the lipid productivity of C. vulgaris UTEX 265. Our results show the possibility of modulating the lipid induction process through oxidative stress with TiO2/UV-A.
References
Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS, Bioresour. Technol., 102(1), 71 (2011)
Sander K, Murthy GS, Int. J. Life Cycle Ass., 15, 704 (2010)
Chisti Y, Biotechnol. Adv., 25, 294 (2007)
Chen M, Liu T, Chen X, Chen L, Zhang W, Wang J, Gao L, Chen Y, Peng X, Eur. J. Lipid Sci. Technol., 114, 205 (2012)
Sharma KK, Schuhmann H, Schenk PM, Energies., 5, 1532 (2012)
Solovchenko AE, Khozin-Goldberg I, Didi-Cohen S, Cohen Z, Merzlyak MN, Russ J. Plant Physiol., 55, 455 (2008)
Cakmak T, Angun P, Demiray YE, Ozkan AD, Elibol Z, Tekinay T, Biotechnol. Bioeng., 109(8), 1947 (2012)
Takagi M, Karseno, Yoshida T, J. Biosci. Bioeng., 101(3), 223 (2006)
Li Z, Keasling JD, Niyogi KK, Plant Physiol., 158, 313 (2012)
Solovchenko AE, Russ J. Plant Physiol., 59, 167 (2012)
Aruoja V, Dubourguier HC, Kasemets K, Kahru A, Sci. Total Environ., 407, 1461 (2009)
Zhukova LV, Kiwi J, Nikandrov VV, Colloids Surf. B Biointerfaces., 97, 240 (2012)
Kim SC, Lee DK, Microchem. J., 80, 227 (2005)
Chai YS, Lee JC, Kim BW, Korean J. Chem. Eng., 17(6), 633 (2000)
Miller RJ, Bennett S, Keller AA, Pease S, Lenihan HS, PLoS ONE., 7, e30321 (2012)
Thiruvenkatachari R, Vigneswaran S, Moon IS, Korean J. Chem. Eng., 25(1), 64 (2008)
Ogino C, Dadjour MF, Iida Y, Shimizu N, J. Hazard. Mater., 153(1-2), 551 (2008)
Harris EH, Chlamydomonas sourcebook: Introduction to chlamydomonas and its laboratory use, Academic Press, UK (2009)
Ritchie RJ, Photosynth Res., 89, 27 (2006)
Chae SR, Shin HS, Process Biochem., 42, 193 (2007)
Yoo G, Park WK, Kim CW, Choi YE, Yang JW, Bioresour. Technol., 123, 717 (2012)
Ryu BG, Kim J, Kim K, Choi YE, Han JI, Yang JW, Bioresour. Technol., 135, 357 (2013)
Sadiq IM, Dalai S, Chandrasekaran N, Mukherjee A, Ecotoxicol. Environ. Saf., 74, 1180 (2011)
Taloria D, Samanta S, Das S, Pututunda C, APCBEE Procedia., 2, 43 (2012)
Lamers PP, van de Laak CCW, Kaasenbrood PS, Lorier J, Janssen M, De Vos RCH, Bino RJ, Wijffels RH, Biotechnol. Bioeng., 106(4), 638 (2010)
Forjan E, Garbayo I, Henriques M, Rocha J, Mar. Biotechnol. (NY), 13, 366 (2011)
Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A, Plant J., 54, 621 (2008)
Kumar A, Pandey AK, Singh SS, Shanker R, Dhawan A, Free Radic Biol. Med., 51, 1872 (2011)
Rodea-Palomares I, Boltes K, Fernandez-Pinas F, Leganes F, Garcia-Calvo E, Santiago J, Rosal R, Toxicol. Sci., 119, 135 (2011)
Mortimer M, Kasemets K, Vodovnik M, Marinsek-Logar R, Kahru A, Environ. Sci. Technol., 45, 6617 (2011)
Ledford HK, Niyogi KK, Plant Cell. Environ., 28, 1037 (2005)
Ji J, Long ZF, Lin DH, Chem. Eng. J., 170(2-3), 525 (2011)
Sander K, Murthy GS, Int. J. Life Cycle Ass., 15, 704 (2010)
Chisti Y, Biotechnol. Adv., 25, 294 (2007)
Chen M, Liu T, Chen X, Chen L, Zhang W, Wang J, Gao L, Chen Y, Peng X, Eur. J. Lipid Sci. Technol., 114, 205 (2012)
Sharma KK, Schuhmann H, Schenk PM, Energies., 5, 1532 (2012)
Solovchenko AE, Khozin-Goldberg I, Didi-Cohen S, Cohen Z, Merzlyak MN, Russ J. Plant Physiol., 55, 455 (2008)
Cakmak T, Angun P, Demiray YE, Ozkan AD, Elibol Z, Tekinay T, Biotechnol. Bioeng., 109(8), 1947 (2012)
Takagi M, Karseno, Yoshida T, J. Biosci. Bioeng., 101(3), 223 (2006)
Li Z, Keasling JD, Niyogi KK, Plant Physiol., 158, 313 (2012)
Solovchenko AE, Russ J. Plant Physiol., 59, 167 (2012)
Aruoja V, Dubourguier HC, Kasemets K, Kahru A, Sci. Total Environ., 407, 1461 (2009)
Zhukova LV, Kiwi J, Nikandrov VV, Colloids Surf. B Biointerfaces., 97, 240 (2012)
Kim SC, Lee DK, Microchem. J., 80, 227 (2005)
Chai YS, Lee JC, Kim BW, Korean J. Chem. Eng., 17(6), 633 (2000)
Miller RJ, Bennett S, Keller AA, Pease S, Lenihan HS, PLoS ONE., 7, e30321 (2012)
Thiruvenkatachari R, Vigneswaran S, Moon IS, Korean J. Chem. Eng., 25(1), 64 (2008)
Ogino C, Dadjour MF, Iida Y, Shimizu N, J. Hazard. Mater., 153(1-2), 551 (2008)
Harris EH, Chlamydomonas sourcebook: Introduction to chlamydomonas and its laboratory use, Academic Press, UK (2009)
Ritchie RJ, Photosynth Res., 89, 27 (2006)
Chae SR, Shin HS, Process Biochem., 42, 193 (2007)
Yoo G, Park WK, Kim CW, Choi YE, Yang JW, Bioresour. Technol., 123, 717 (2012)
Ryu BG, Kim J, Kim K, Choi YE, Han JI, Yang JW, Bioresour. Technol., 135, 357 (2013)
Sadiq IM, Dalai S, Chandrasekaran N, Mukherjee A, Ecotoxicol. Environ. Saf., 74, 1180 (2011)
Taloria D, Samanta S, Das S, Pututunda C, APCBEE Procedia., 2, 43 (2012)
Lamers PP, van de Laak CCW, Kaasenbrood PS, Lorier J, Janssen M, De Vos RCH, Bino RJ, Wijffels RH, Biotechnol. Bioeng., 106(4), 638 (2010)
Forjan E, Garbayo I, Henriques M, Rocha J, Mar. Biotechnol. (NY), 13, 366 (2011)
Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A, Plant J., 54, 621 (2008)
Kumar A, Pandey AK, Singh SS, Shanker R, Dhawan A, Free Radic Biol. Med., 51, 1872 (2011)
Rodea-Palomares I, Boltes K, Fernandez-Pinas F, Leganes F, Garcia-Calvo E, Santiago J, Rosal R, Toxicol. Sci., 119, 135 (2011)
Mortimer M, Kasemets K, Vodovnik M, Marinsek-Logar R, Kahru A, Environ. Sci. Technol., 45, 6617 (2011)
Ledford HK, Niyogi KK, Plant Cell. Environ., 28, 1037 (2005)
Ji J, Long ZF, Lin DH, Chem. Eng. J., 170(2-3), 525 (2011)