Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 29, 2013
Accepted February 6, 2014
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Electrochemical properties of Co-less layered transition metal oxide as high energy cathode material for Li-ion batteries
Sungho Choo1 2
Hye Yeon Kim1
Dong Young Yoon1
Wonchang Choi1
Si-Hyung Oh1
Jeh Beck Ju3
Jang Myoun Ko4†
Ho Jang2
Won Il Cho1†
1Center for Energy Convergence, Korea Institute of Science and Technology, Seoul 136-791, Korea 2Department of Materials Science and Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 136-701, Korea 3Department of Chemical Engineering, Hongik University, Seoul 121-791, Korea 4Department of Chemical and Biological Engineering, Hanbat National University, 125, Yuseong-gu, Daejeon 305-719, Korea
jmko@hanbat.ac.kr
Korean Journal of Chemical Engineering, May 2014, 31(5), 905-910(6), 10.1007/s11814-014-0046-y
Download PDF
Abstract
High energy nickel manganese cobalt oxide materials (HENMC) are one of the most viable cathode materials for a high energy density lithium ion battery (LIB), but they contain expensive and toxic cobalt (Co). We synthesized Co-free high energy nickel manganese oxide cathode materials (HENM) via a solid state reaction method and a coprecipitation method. Their structural and electrochemical properties were comparatively investigated using X-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM), inductively coupled plasma (ICP), electron probe micro-analysis (EPMA), particle size analysis (PSA) and electrochemical impedance spectroscopy (EIS). The co-precipitated HENM and the solid state fabricated HENM showed high capacities of 250 mAhg^(-1) and 240 mAhg^(-1), respectively. It suggests that the solid state fabricated method of HENM would be a good candidate for practical application as well as the co-precipitated one.
Keywords
References
Ellis BL, Lee KT, Nazar LF, Chem. Mater., 22, 691 (2010)
Dominko F, Bele M, Gaberscek M, Meden A, Remskar M, Jamnik M, Electrochem. Commun., 8, 217 (2006)
Doe RE, Persson KA, Meng YS, Ceder G, Chem. Mater., 20, 5274 (2008)
Kang SH, Kempgens P, Greenbaum S, Kropf AJ, Amine K, Thackeray MM, J. Mater. Chem., 17, 2069 (2007)
Thackeray MM, Kang SH, Johnson CS, Vaughey JT, Benedek R, Hackney SA, J. Mater. Chem., 17, 3112 (2007)
Johnson CS, Li N, Lefief C, Vaughey JT, Thackeray MM, Synth. Chem. Mater., 20, 6095 (2008)
Kang SH, Lu W, Gallagher KG, Park SH, Pol VG, J. Electrochem. Soc., 158, 936 (2011)
Kim GY, Yi SB, Park YJ, Kim HG, Mater. Res. Bull., 43(12), 3543 (2008)
Wang QY, Liu J, Murugan AV, Manthiram A, J. Mater. Chem., 19, 4965 (2009)
Ito A, Li DC, Sato Y, Arao M, Watanabe M, Hatano M, Horie H, Ohsawa Y, J. Power Sources, 195(2), 567 (2010)
Zhang XY, Jiang WJ, Mauger A, Qilu, Gendron F, Julien CM, J. Power Sources, 195(5), 1292 (2010)
Liu J, Manthiram A, J. Mater. Chem., 20, 3961 (2010)
Liu J, Reeja-Jayan B, Manthram A, J. Phys. Chem. C, 114, 9528 (2010)
Liu J, Wang Q, Reeja-Jayan B, Manthram A, Electrochem. Commun., 12, 750 (2010)
Amalraj F, Kovacheva D, Talianker M, Zeiri L, Grinblat J, Leifer N, Gobes G, Markovsky B, Aurbach D, J. Electrochem. Soc., 157, 1121 (2010)
Park SH, Kang SH, Johnson CS, Amine K, Thackeray MM, Electrochem. Commun., 2, 262 (2007)
Cabana J, Kang SH, Johnson CS, Thackeray MM, Grey CP, J. Electrochem.Soc., 156, 730 (2009)
Meng YS, Ceder G, Grey CP, Yoon WS, Jiang M, Breger J, Shao-Horn Y, Chem. Mater., 17, 2386 (2005)
Breger J, Jiang M, Dupre N, Meng YS, Shao-Horn Y, Ceder G, Grey CP, J. Solid State Chem., 178, 2575 (2005)
Massarotti V, Bini M, Capsoni D, Altomare A, Moliterni AGG, J. Appl. Crystallogr., 30, 123 (1997)
Strobel P, Lambertandron B, J. Solid State Chem., 75, 90 (1988)
Riou A, Lecerf A, Gerault Y, Cudennec Y, Mater. Res. Bull., 27, 269 (1992)
Boulineau A, Croguennec L, Delmas C, Weill F, Solid State Ion., 180(40), 1652 (2010)
Ohzuku T, Makimura Y, Chem. Lett., 7, 642 (2001)
Deng H, Belharouak I, Cook RE, Wu H, Sun YK, Amine K, J. Electrochem. Soc., 157, 447 (2010)
Seo HR, Lee EA, Yi CW, Kim KO, J. Electrochem. Sci. Technol., 3, 180 (2011)
Makimura Y, Ohzuku T, J. Power Sources, 119, 156 (2003)
Liao PY, Duh JG, Sheu HS, J. Power Sources, 183(2), 766 (2008)
Yu DYW, Yanagida K, Kato Y, Nakamura H, J. Electrochem. Soc., 156, 417 (2009)
Lee DK, Park SH, Amine K, Bang HJ, Parakash J, Sun YK, J. Power Sources, 162(2), 1346 (2006)
Hong JH, Seo DH, Kim SW, Gwon HJ, Oh ST, Kang KS, J. Mater. Chem., 20, 10179 (2010)
Lu Z, Dahn JR, J. Electrochem. Soc., 149, 815 (2002)
Dominko F, Bele M, Gaberscek M, Meden A, Remskar M, Jamnik M, Electrochem. Commun., 8, 217 (2006)
Doe RE, Persson KA, Meng YS, Ceder G, Chem. Mater., 20, 5274 (2008)
Kang SH, Kempgens P, Greenbaum S, Kropf AJ, Amine K, Thackeray MM, J. Mater. Chem., 17, 2069 (2007)
Thackeray MM, Kang SH, Johnson CS, Vaughey JT, Benedek R, Hackney SA, J. Mater. Chem., 17, 3112 (2007)
Johnson CS, Li N, Lefief C, Vaughey JT, Thackeray MM, Synth. Chem. Mater., 20, 6095 (2008)
Kang SH, Lu W, Gallagher KG, Park SH, Pol VG, J. Electrochem. Soc., 158, 936 (2011)
Kim GY, Yi SB, Park YJ, Kim HG, Mater. Res. Bull., 43(12), 3543 (2008)
Wang QY, Liu J, Murugan AV, Manthiram A, J. Mater. Chem., 19, 4965 (2009)
Ito A, Li DC, Sato Y, Arao M, Watanabe M, Hatano M, Horie H, Ohsawa Y, J. Power Sources, 195(2), 567 (2010)
Zhang XY, Jiang WJ, Mauger A, Qilu, Gendron F, Julien CM, J. Power Sources, 195(5), 1292 (2010)
Liu J, Manthiram A, J. Mater. Chem., 20, 3961 (2010)
Liu J, Reeja-Jayan B, Manthram A, J. Phys. Chem. C, 114, 9528 (2010)
Liu J, Wang Q, Reeja-Jayan B, Manthram A, Electrochem. Commun., 12, 750 (2010)
Amalraj F, Kovacheva D, Talianker M, Zeiri L, Grinblat J, Leifer N, Gobes G, Markovsky B, Aurbach D, J. Electrochem. Soc., 157, 1121 (2010)
Park SH, Kang SH, Johnson CS, Amine K, Thackeray MM, Electrochem. Commun., 2, 262 (2007)
Cabana J, Kang SH, Johnson CS, Thackeray MM, Grey CP, J. Electrochem.Soc., 156, 730 (2009)
Meng YS, Ceder G, Grey CP, Yoon WS, Jiang M, Breger J, Shao-Horn Y, Chem. Mater., 17, 2386 (2005)
Breger J, Jiang M, Dupre N, Meng YS, Shao-Horn Y, Ceder G, Grey CP, J. Solid State Chem., 178, 2575 (2005)
Massarotti V, Bini M, Capsoni D, Altomare A, Moliterni AGG, J. Appl. Crystallogr., 30, 123 (1997)
Strobel P, Lambertandron B, J. Solid State Chem., 75, 90 (1988)
Riou A, Lecerf A, Gerault Y, Cudennec Y, Mater. Res. Bull., 27, 269 (1992)
Boulineau A, Croguennec L, Delmas C, Weill F, Solid State Ion., 180(40), 1652 (2010)
Ohzuku T, Makimura Y, Chem. Lett., 7, 642 (2001)
Deng H, Belharouak I, Cook RE, Wu H, Sun YK, Amine K, J. Electrochem. Soc., 157, 447 (2010)
Seo HR, Lee EA, Yi CW, Kim KO, J. Electrochem. Sci. Technol., 3, 180 (2011)
Makimura Y, Ohzuku T, J. Power Sources, 119, 156 (2003)
Liao PY, Duh JG, Sheu HS, J. Power Sources, 183(2), 766 (2008)
Yu DYW, Yanagida K, Kato Y, Nakamura H, J. Electrochem. Soc., 156, 417 (2009)
Lee DK, Park SH, Amine K, Bang HJ, Parakash J, Sun YK, J. Power Sources, 162(2), 1346 (2006)
Hong JH, Seo DH, Kim SW, Gwon HJ, Oh ST, Kang KS, J. Mater. Chem., 20, 10179 (2010)
Lu Z, Dahn JR, J. Electrochem. Soc., 149, 815 (2002)