ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received September 22, 2013
Accepted January 22, 2014
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Optimization of sulfamethoxazole degradation by TiO2/hydroxyapatite composite under ultraviolet irradiation using response surface methodology

Department of Environmental Energy Systems Engineering, Kyonggi University, Suwon 443-760, Korea 1Department of Civil and Environmental Engineering, Hanyang University, Seoul 133-791, Korea 2Korea Environment Corporation, Incheon 404-708, Korea
swchang@kgu.ac.kr
Korean Journal of Chemical Engineering, June 2014, 31(6), 994-1001(8), 10.1007/s11814-014-0027-1
downloadDownload PDF

Abstract

A titanium dioxide/hydroxyapatite/ultraviolet (TiO2/HAP/UV-A) system was used to remove sulfamethoxazole (SMX) from water in a second-order response surface methodology (RSM) experiment with a three-level Box-Behnken design (BBD) for optimization. The effects of both the primary and secondary interaction effects of three photocatalytic reaction variables were examined: the concentration of SMX (X1), dose of TiO2/HAP composite (X2), and UV intensity (X3). The UV intensity and TiO2/HAP dose significantly influence the SMX and total organic carbon (TOC) removal (p<0.001). However, the SMX and TOC removal are enhanced with increasing TiO2/HAP dose up to certain levels, and further increases in the TiO2/HAP dose result in adverse effects due to hydroxyl radical scavenging at higher catalyst concentrations. Complete removal of SMX was achieved upon UV-A irradiation for 180 min. Under optimal conditions, 51.2% of the TOC was removed, indicating the formation of intermediate products during SMX_x000D_ degradation. The optimal ratio of SMX (mg L^(-1)) to TiO2/HAP (g L^(-1)) to UV (W/L) was 5.4145 mg L^(-1) to 1.4351 gL^(-1) to 18 W for both SMX and TOC removal. By comparison with actual applications, the experimental results were found to be in good agreement with the model's predictions, with mean results for SMX and TOC removal of 99.89% and 51.01%, respectively.

References

Nasuhoglu D, Yargeau V, Berk D, J. Hazard. Mater., 186(1), 67 (2011)
Herberer T, J. Hydrol., 266, 175 (2002)
Stackelberg PE, Furlong ET, Meyer MT, Zaugg SD, Henderson AK, Reissman DB, Sci. Total Environ., 329, 99 (2004)
Alexy R, Kumpel T, Kummerer DK, Chemosphere, 57, 505 (2004)
Azema J, Guidetti B, Korolyov A, Kiss R, Roques C, Constant P, Daffe M, Malet-Martino M, European J. Med. Chem., 46, 6025 (2011)
Jørgensen SE, Halling-Sørensen B, Chemosphere, 40, 691 (2000)
Hu L, Flanders PM, Miller PL, Strathmann TJ, Water Res., 41, 2612 (2007)
Tsukada M, Wakamura M, Yoshida N, Watanabe T, J. Mol. Catal. A-Chem., 338(1-2), 18 (2011)
Pratap Reddy M, Venugopal A, Subrahmanyam M, Water Res., 41, 379 (2007)
Palominos RA, Mora A, Mondaca MA, Perez-Moya M, Mansilla HD, J. Hazard. Mater., 158(2-3), 460 (2008)
Kumar A, Prasad B, Mishra IM, J. Hazard. Mater., 150, 174 (2008)
Cho IH, Zoh KD, Dyes and Pigments, 75, 533 (2007)
Pushpakanth S, Srinivasan B, Sreedhar B, Sastry TP, Mater. Chem. Phys., 107(2-3), 492 (2008)
Wang J, Li CW, Luan XY, Li J, Wang BX, Zhang LQ, Xu R, Zhang XD, J. Mol. Catal. A-Chem., 320(1-2), 62 (2010)
Xu L, Wang GRLT, Ma FY, Zhao YH, Lu N, Guo YH, Yang X, Appl. Surf. Sci., 258(18), 7039 (2012)
Ma N, Zhang Y, Quan X, Water Res., 44, 6104 (2010)
Xekoukoulotakis NP, Drosou C, Brebou C, Chatzisymeon E, Hapeshi E, Fatta-Kassinos D, Mantzavinos D, Catal. Today, 161(1), 163 (2011)
Herrmann JM, Disdier J, Pichat P, Malato S, Blanco J, Appl. Catal. B: Environ., 17(1-2), 15 (1998)
Kusvuran E, Irmak S, Yavuz HI, Samil A, Erbatur W, J. Hazard. Mater., 119(1-3), 109 (2005)
Abellan MN, Gimenez J, Esplugas S, Catal. Today, 144, 131 (2009)
Gonzalez O, Sans C, Esplugas S, J. Hazard. Mater., 146(3), 459 (2007)
Ahmaruzzaman M, Sharma DK, J. Colloid Interface Sci., 287(1), 14 (2005)
Lin KL, Pan JY, Chen YW, Cheng RM, Xu XC, J. Hazard. Mater., 161(1), 231 (2009)
Liu Y, Liu CY, Wei JH, Xiong R, Pan CX, Shi J, Appl. Surf. Sci., 256(21), 6390 (2010)
Sheng G, Qiao L, Mou Y, J. Environ. Eng., 137, 611 (2011)
Kanai H, Lintuluoto M, Matsumara Y, Moffat JB, J. Mol. Catal. A-Chem., 252(1-2), 181 (2006)
Nishikawa H, J. Mol. Catal. A-Chem., 206(1-2), 331 (2003)
Reddy MP, Venugopal A, Subrahmanyam M, Appl. Catal. B: Environ., 69(3-4), 164 (2007)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로