Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received November 28, 2013
Accepted January 18, 2014
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Hydrogenolysis of nitrosodimethyl amine in gas phase over Au/γ-Al2O3 nanocatalyst
Faculty Chemical Engineering, Malek Ashtar University of Technology, P. O. Box 11365-8486, Tehran, Iran 1Space Transportation Research Institute, Iranian Space Research Center, P. O. Box 13445-754, Tehran, Iran
Korean Journal of Chemical Engineering, July 2014, 31(7), 1174-1179(6), 10.1007/s11814-014-0024-4
Download PDF
Abstract
Nitrosodimethyl amine (NDMA), as a carcinogenic byproduct in production of unsymmetrical dimethyl hydrazine (UDMH) in space industries, should be decomposed in the vapor phase. A suitable method for this purpose is selective catalytic hydrogenolysis of NDMA over Au/γ-Al2O3 nanocatalyst. We synthesized and characterized the Au/γ-Al2O3 nanocatalyst by homogeneous deposition-precipitation (HDP)/DP-urea method. Activity of the catalyst was influenced by nanosized Au particles, Au loading and the bed temperature. The optimum parameters for the catalyst were: Au particles <5 nm, Au loading at 1.5 wt% and bed temperature of 35-45 ℃. The reaction was strongly sensitive to the Au particle size. The reaction occurred over the catalyst to produce dimethyl amine (DMA) and nitroxyl in a selective manner. The kinetics of NDMA hydrogenolysis over the nanocatalyst was studied in an integral fixed bed reactor. There existed a consistency with the Langmuir-Hinshelwood mechanism involving dissociative adsorption of H2 and NDMA.
References
Schmidt EW, Hydrazine and its derivatives (2nd Ed.), Wiley, New York (2001)
Xu H, N-Nitrosamines in the environment, Science Press, Beijing (1988)
Xu BB, Chen ZL, Qi F, Ma J, Wu FC, J. Hazard. Mater., 168(1), 108 (2009)
Lee J, Choi W, Yon J, Environ. Sci. Technol., 39, 6800 (2005)
Sharma VK, Sep. Purif. Technol., 88, 1 (2012)
Gui L, Gillham RW, Odziemkowski MS, Environ. Sci. Technol., 34, 3489 (2000)
Davie MG, Reinhard M, Shapley JR, Environ. Sci. Technol., 40, 7329 (2006)
Smith GV, Notheisz F, Heterogeneous catalysis in organic chemistry, Academic Press, New York (1999)
Haruta M, Catal. Surv. Jpn., 1, 61 (1997)
Santos LL, Serna P, Corma A, Chem. Eur. J., 15, 8196 (2009)
Corma A, Serna P, Science, 313, 332 (2006)
Pakdehi SG, Sohrabi M, Chem. Eng. Technol., 34(11), 1840 (2011)
Hugon A, Delannoy L, Krafft JM, Louis C, J. Phys. Chem. C, 114, 10823 (2010)
Shiva S, Crawford JH, Ramachandran A, Ceaser EK, Hillson T, Brookes PS, Patel RP, Darley-Usmar VM, Biochem. J., 379, 359 (2004)
Shafirovich V, Lymar SV, Proceedings of the National Academy of Sciences, 99, 7340 (2002)
Greenwood NN, Earnshaw A, Chemistry of the elements, Elsevier, Oxford (1997)
Kartusch C, van Bokhoven JA, Gold Bull., 42, 343 (2009)
Bond GC, Thompson DT, Catal. Rev.-Sci. Eng., 41(3-4), 319 (1999)
McEwana L, Juliusa M, Robertsa S, Fletchera JCQ, Gold Bull., 43, 298 (2010)
Hussain A, A computational study of catalysis by gold in applications of CO oxidation, Ph.D. Thesis, Eindhoven: Technische Universiteit Eindhoven (2010)
Comotti M, Nano-design as a powerful tool in gold catalyzed oxidation reactions, Ph.D. Thesis, Bochum: Universitat Bochum (2007)
Okumura M, Akita T, Haruta M, Catal. Today, 74(3-4), 265 (2002)
Huang D, Liao F, Molesa S, Redinger D, Subramanian V, J. Electrochem. Soc., 150, 412 (2003)
Perego C, Peratello S, Catal. Today, 52(2-3), 133 (1999)
Ishida T, Kawakita N, Akita T, Haruta M, Gold Bull., 42, 267 (2009)
Aufray M, Roche AA, Appl. Surf. Sci., 254, 1936 (2007)
Xu H, N-Nitrosamines in the environment, Science Press, Beijing (1988)
Xu BB, Chen ZL, Qi F, Ma J, Wu FC, J. Hazard. Mater., 168(1), 108 (2009)
Lee J, Choi W, Yon J, Environ. Sci. Technol., 39, 6800 (2005)
Sharma VK, Sep. Purif. Technol., 88, 1 (2012)
Gui L, Gillham RW, Odziemkowski MS, Environ. Sci. Technol., 34, 3489 (2000)
Davie MG, Reinhard M, Shapley JR, Environ. Sci. Technol., 40, 7329 (2006)
Smith GV, Notheisz F, Heterogeneous catalysis in organic chemistry, Academic Press, New York (1999)
Haruta M, Catal. Surv. Jpn., 1, 61 (1997)
Santos LL, Serna P, Corma A, Chem. Eur. J., 15, 8196 (2009)
Corma A, Serna P, Science, 313, 332 (2006)
Pakdehi SG, Sohrabi M, Chem. Eng. Technol., 34(11), 1840 (2011)
Hugon A, Delannoy L, Krafft JM, Louis C, J. Phys. Chem. C, 114, 10823 (2010)
Shiva S, Crawford JH, Ramachandran A, Ceaser EK, Hillson T, Brookes PS, Patel RP, Darley-Usmar VM, Biochem. J., 379, 359 (2004)
Shafirovich V, Lymar SV, Proceedings of the National Academy of Sciences, 99, 7340 (2002)
Greenwood NN, Earnshaw A, Chemistry of the elements, Elsevier, Oxford (1997)
Kartusch C, van Bokhoven JA, Gold Bull., 42, 343 (2009)
Bond GC, Thompson DT, Catal. Rev.-Sci. Eng., 41(3-4), 319 (1999)
McEwana L, Juliusa M, Robertsa S, Fletchera JCQ, Gold Bull., 43, 298 (2010)
Hussain A, A computational study of catalysis by gold in applications of CO oxidation, Ph.D. Thesis, Eindhoven: Technische Universiteit Eindhoven (2010)
Comotti M, Nano-design as a powerful tool in gold catalyzed oxidation reactions, Ph.D. Thesis, Bochum: Universitat Bochum (2007)
Okumura M, Akita T, Haruta M, Catal. Today, 74(3-4), 265 (2002)
Huang D, Liao F, Molesa S, Redinger D, Subramanian V, J. Electrochem. Soc., 150, 412 (2003)
Perego C, Peratello S, Catal. Today, 52(2-3), 133 (1999)
Ishida T, Kawakita N, Akita T, Haruta M, Gold Bull., 42, 267 (2009)
Aufray M, Roche AA, Appl. Surf. Sci., 254, 1936 (2007)