Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 9, 2013
Accepted January 22, 2014
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Utilization of lignocellulosic waste for ethanol production: Enzymatic digestibility and fermentation of pretreated shea tree sawdust
Augustine Omoniyi Ayeni1 2
James Abiodun Omoleye2
Sandeep Mudliar1
Fredrick Kofi Hymore2
Ram Awtar Pandey1†
1Environmental Biotechnology Division, National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440020 Maharashtra, India 2Department of Chemical Engineering, Covenant University, Km. 10 Idiroko Road, Canaan Land Ota, Nigeria
Korean Journal of Chemical Engineering, July 2014, 31(7), 1180-1186(7), 10.1007/s11814-014-0026-2
Download PDF
Abstract
Enzymatic hydrolysis and fermentation methods were evaluated on alkaline peroxide pretreated shea tree sawdust conversion to ethanol. Optimum pretreatment conditions of 120 ℃ reaction temperature, 30 min reaction time, and 20 mL L^(-1) of water hydrogen peroxide concentration (1%(v/v)H2O2) solubilized 679 g kg^(-1) of hemicellulose and 172 g kg^(-1) of lignin. 617 g kg^(-1) cellulose was retained in the solid fraction. The maximum yield of reducing sugar with optimized enzyme loadings by two enzyme preparations (cellulase and β-glucosidase) was 165 g kg^(-1) of dry biomass. The ethanol yield was 7.35 g L^(-1) after 72 h incubation period under the following conditions: 2% cellulose loading, enzyme concentration was 25 FPU (g cellulose).1 loading, yeast inoculums was 10% (v/v), 32 oC, and pH 4.8. The pretreatments gave information about the hindrances caused by lignin presence in lignocellulosic materials and that hemicelluloses are better hydrolyzed than lignin, thereby enhancing enzymatic digestibility of the sawdust material.
Keywords
References
Hoogwijk M, Faaija A, van den Broek R, Berndes G, Gielen D, Turkenburg W, Biomass Bioenerg., 25(2), 119 (2003)
Lin Y, Tanaka S, Appl. Microbiol. Biotechnol., 69(6), 627 (2006)
Mielenz JR, Curr. Opin. Microbiol., 4, 324 (2001)
Sanchez OJ, Cardona CA, Bioresour. Technol., 99(13), 5270 (2008)
Salle G, Boussim J, Raynal-Roques A, Brunck F, Bois et Forets des Tropiques, 228, 11 (1991)
Kaar WE, Holtzapple MT, Biomass Bioenerg., 18, 189 (1999)
Gould JM, Biotechnol. Bioeng., 24, 46 (1984)
Gould JM, Biotechnol. Bioeng., 27, 225 (1985)
Saha BC, Cotta MA, Biotechnol. Prog., 22(2), 449 (2006)
Saha BC, Cotta MA, Enzyme Microb. Technol., 41(4), 528 (2007)
Dawson L, Boopathy R, Bioresour. Technol., 98, 1695 (2006)
Ayeni AO, Banerjee S, Omoleye JA, Hymore FK, Giri BS, Deskmukh SC, Pandey RA, Mudliar SN, Biomass Bioenerg., 48, 130 (2013)
Ayeni AO, Hymore FK, Mudliar SN, Deskmukh SC, Satpute DB, Omoleye JA, Pandey RA, Fuel, 106, 187 (2013)
Montgomery DC, Design and analysis of experiments, Wiley, New York (2001)
Mathews P, Design of experiments with MINITAB, Pearson Education Publications, New-Delhi (2005)
Kim S, Holtzapple MT, Bioresour. Technol., 96(18), 1994 (2005)
Chang VS, Nagwani M, Kim CH, Holtzapple MT, Appl. Biochem. Biotechnol., 94(1), 1 (2001)
Di Blasi C, Signorelli G, Di Russo C, Rea G, Ind. Eng. Chem. Res., 38(6), 2216 (1999)
Li SG, Xu SP, Liu SQ, Yang C, Lu QH, Fuel Process. Technol., 85(8-10), 1201 (2004)
Lin LL, Yan R, Liu YQ, Jiang WJ, Bioresour. Technol., 101(21), 8217 (2010)
Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, US NREL Report No.: TP-510-42618 Contract No.: DE-AC36-99-G010337 (2008)
Falls M, Holtzapple MT, Appl. Biochem. Biotechnol., 165(2), 506 (2011)
Dowe N, McMillan JJ, US NREL Report No.: TP-510-42630 Contract No.: DE-AC36-99-G010337 (2008)
Miller GL, Anal. Chem., 31, 426 (1959)
Ma FY, Yang N, Xu CY, Yu HB, Wu JG, Zhang XY, Bioresour. Technol., 101(24), 9600 (2010)
Bennet C, American J. Med. Technol., 37, 217 (1971)
Nagwani M, thesis MMS, Texas A&M University, College Station, Texas (1992)
SILANIKOVE N, Bioresour. Technol., 48(1), 71 (1994)
Chang VS, Holtzapple MT, Appl. Biochem. Biotechnol., 84-86, 5 (2000)
Sutcliffe R, Saddler JN, Biotechnol. Bioeng. Symp., 17, 749 (1986)
Palonen H, Thomsen AB, Tenkanen M, Schmidt AS, Viikari U, Appl. Biochem. Biotechnol., 117(1), 1 (2004)
Gregg DJ, Boussaid A, Saddler JN, Bioresour. Technol., 63(1), 7 (1998)
Tengborg C, Galbe M, Zacchi G, Biotechnol. Prog., 17(1), 110 (2001)
Sharma SK, Kalra KL, Grewal HS, Biomass Bioenerg., 23(3), 237 (2002)
Kuhad RC, Gupta R, Khasa YP, Singh A, Bioresour. Technol., 101(21), 8348 (2010)
Ramon-Portugal F, Pingaud H, Strehaiano P, Biotechnol. Lett., 26(21), 1671 (2004)
Lin Y, Tanaka S, Appl. Microbiol. Biotechnol., 69(6), 627 (2006)
Mielenz JR, Curr. Opin. Microbiol., 4, 324 (2001)
Sanchez OJ, Cardona CA, Bioresour. Technol., 99(13), 5270 (2008)
Salle G, Boussim J, Raynal-Roques A, Brunck F, Bois et Forets des Tropiques, 228, 11 (1991)
Kaar WE, Holtzapple MT, Biomass Bioenerg., 18, 189 (1999)
Gould JM, Biotechnol. Bioeng., 24, 46 (1984)
Gould JM, Biotechnol. Bioeng., 27, 225 (1985)
Saha BC, Cotta MA, Biotechnol. Prog., 22(2), 449 (2006)
Saha BC, Cotta MA, Enzyme Microb. Technol., 41(4), 528 (2007)
Dawson L, Boopathy R, Bioresour. Technol., 98, 1695 (2006)
Ayeni AO, Banerjee S, Omoleye JA, Hymore FK, Giri BS, Deskmukh SC, Pandey RA, Mudliar SN, Biomass Bioenerg., 48, 130 (2013)
Ayeni AO, Hymore FK, Mudliar SN, Deskmukh SC, Satpute DB, Omoleye JA, Pandey RA, Fuel, 106, 187 (2013)
Montgomery DC, Design and analysis of experiments, Wiley, New York (2001)
Mathews P, Design of experiments with MINITAB, Pearson Education Publications, New-Delhi (2005)
Kim S, Holtzapple MT, Bioresour. Technol., 96(18), 1994 (2005)
Chang VS, Nagwani M, Kim CH, Holtzapple MT, Appl. Biochem. Biotechnol., 94(1), 1 (2001)
Di Blasi C, Signorelli G, Di Russo C, Rea G, Ind. Eng. Chem. Res., 38(6), 2216 (1999)
Li SG, Xu SP, Liu SQ, Yang C, Lu QH, Fuel Process. Technol., 85(8-10), 1201 (2004)
Lin LL, Yan R, Liu YQ, Jiang WJ, Bioresour. Technol., 101(21), 8217 (2010)
Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, US NREL Report No.: TP-510-42618 Contract No.: DE-AC36-99-G010337 (2008)
Falls M, Holtzapple MT, Appl. Biochem. Biotechnol., 165(2), 506 (2011)
Dowe N, McMillan JJ, US NREL Report No.: TP-510-42630 Contract No.: DE-AC36-99-G010337 (2008)
Miller GL, Anal. Chem., 31, 426 (1959)
Ma FY, Yang N, Xu CY, Yu HB, Wu JG, Zhang XY, Bioresour. Technol., 101(24), 9600 (2010)
Bennet C, American J. Med. Technol., 37, 217 (1971)
Nagwani M, thesis MMS, Texas A&M University, College Station, Texas (1992)
SILANIKOVE N, Bioresour. Technol., 48(1), 71 (1994)
Chang VS, Holtzapple MT, Appl. Biochem. Biotechnol., 84-86, 5 (2000)
Sutcliffe R, Saddler JN, Biotechnol. Bioeng. Symp., 17, 749 (1986)
Palonen H, Thomsen AB, Tenkanen M, Schmidt AS, Viikari U, Appl. Biochem. Biotechnol., 117(1), 1 (2004)
Gregg DJ, Boussaid A, Saddler JN, Bioresour. Technol., 63(1), 7 (1998)
Tengborg C, Galbe M, Zacchi G, Biotechnol. Prog., 17(1), 110 (2001)
Sharma SK, Kalra KL, Grewal HS, Biomass Bioenerg., 23(3), 237 (2002)
Kuhad RC, Gupta R, Khasa YP, Singh A, Bioresour. Technol., 101(21), 8348 (2010)
Ramon-Portugal F, Pingaud H, Strehaiano P, Biotechnol. Lett., 26(21), 1671 (2004)