Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received November 7, 2013
Accepted January 28, 2014
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Effect of membrane-electrode-assembly configuration on proton exchange membrane fuel cell performance
1Center for Electrochemical Engineering, Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA 2Department of Chemical Engineering, Kwangwoon University, Seoul 139-701, Korea 3, USA
vitalspark@kw.ac.kr
Korean Journal of Chemical Engineering, August 2014, 31(8), 1384-1388(5), 10.1007/s11814-014-0037-z
Download PDF
Abstract
Four different membrane-electrode-assemblies (MEAs) with single and dual-layer gas diffusion layers (GDLs) at the anode and the cathode were prepared to examine polarization characteristics that rely on MEA configuration. Porous structure of single and dual-layer GDLs was investigated using a mercury porosimeter. An MEA with dual-layer GDLs at each electrode demonstrated higher performance with an air feed. To comprehend the improvement, the impedance behavior at various current densities and polarization behavior under back pressure were analyzed in terms of oxygen diffusion processes that control catalyst utilization in the gas diffusion electrode.
Keywords
References
Mathias M, Roth J, Fleming J, Lehnert W, in Handbook of fuel cells, Vielstich W, Lamm A, Gasteiger HA, Eds., John Wiley & Sons, New York (2003).
Barbir F, PEM fuel cells, Elsevier Academic Press, Burlington (2005).
Williams MV, Begg E, Bonville L, Kunz HR, Fenton JM, J. Electrochem. Soc., 151(8), A1173 (2004)
Park S, Lee JW, Popov BN, Int. J. Hydrog. Energy, 37(7), 5850 (2012)
Paganin VA, Ticianelli EA, Gonzalez ER, J. Appl. Electrochem., 26(3), 297 (1996)
Lufrano F, Passalacqua E, Squadrito G, Patti A, Giorgi L, J. Appl. Electrochem., 29(4), 445 (1999)
Passalacqua E, Squadrito G, Lufrano F, Patti A, Giorgi L, J. Appl. Electrochem., 31(4), 449 (2001)
Qi ZG, Kaufman A, J. Power Sources, 109(1), 38 (2002)
Antolini E, Passos RR, Ticianelli EA, J. Power Sources, 109(2), 477 (2002)
Nam JH, Kaviany M, Int. J. Heat Mass Transf., 46(24), 4595 (2003)
Pasaogullari U, Wang CY, Electrochim. Acta, 49(25), 4359 (2004)
Park GG, Sohn YJ, Yang TH, Yoon YG, Lee WY, Kim CS, J. Power Sources, 131(1-2), 182 (2004)
Weber AZ, Newman J, J. Electrochem. Soc., 152(4), A677 (2005)
Park S, Lee JW, Popov BN, J. Power Sources, 177(2), 457 (2008)
Weber AZ, Newman J, J. Electrochem. Soc., 153(12), A2205 (2006)
Kim S, Mench MM, J. Electrochem. Soc., 156(3), B353 (2009)
Cindrella L, Kannan AM, Ahmad R, Thommes M, Int. J. Hydrog. Energy, 34(15), 6377 (2009)
Wang YX, Al Shakhshir S, Li XG, Appl. Energy, 88(6), 2168 (2011)
Schweiss R, Steeb M, Wilde PM, Fuel Cells, 10, 1176 (2010)
Ahn M, Cho YH, Cho YH, Kim J, Jung N, Sung YE, Electrochim. Acta, 56(5), 2450 (2011)
Kaviany M, Principles of heat transfer in porous media, Springer-Verlag, New York (1991).
Park S, Popov BN, Electrochim. Acta, 54(12), 3473 (2009)
Kong CS, Kim DY, Lee HK, Shul YG, Lee TH, J. Power Sources, 108(1-2), 185 (2002)
Lin GY, Van Nguyen T, J. Electrochem. Soc., 152(10), A1942 (2005)
Springer TE, Raistrick ID, J. Electrochem. Soc., 136, 1594 (1989)
Raistrick ID, Electrochim. Acta, 35, 1579 (1990)
Ciureanu M, Roberge R, J. Phys. Chem. B, 105(17), 3531 (2001)
Bultel Y, Wiezell K, Jaouen F, Ozil P, Lindbergh G, Electrochim. Acta, 51(3), 474 (2005)
Springer TE, Wilson MS, Gottesfeld S, J. Electrochem. Soc., 135, 1594 (1989)
Barbir F, PEM fuel cells, Elsevier Academic Press, Burlington (2005).
Williams MV, Begg E, Bonville L, Kunz HR, Fenton JM, J. Electrochem. Soc., 151(8), A1173 (2004)
Park S, Lee JW, Popov BN, Int. J. Hydrog. Energy, 37(7), 5850 (2012)
Paganin VA, Ticianelli EA, Gonzalez ER, J. Appl. Electrochem., 26(3), 297 (1996)
Lufrano F, Passalacqua E, Squadrito G, Patti A, Giorgi L, J. Appl. Electrochem., 29(4), 445 (1999)
Passalacqua E, Squadrito G, Lufrano F, Patti A, Giorgi L, J. Appl. Electrochem., 31(4), 449 (2001)
Qi ZG, Kaufman A, J. Power Sources, 109(1), 38 (2002)
Antolini E, Passos RR, Ticianelli EA, J. Power Sources, 109(2), 477 (2002)
Nam JH, Kaviany M, Int. J. Heat Mass Transf., 46(24), 4595 (2003)
Pasaogullari U, Wang CY, Electrochim. Acta, 49(25), 4359 (2004)
Park GG, Sohn YJ, Yang TH, Yoon YG, Lee WY, Kim CS, J. Power Sources, 131(1-2), 182 (2004)
Weber AZ, Newman J, J. Electrochem. Soc., 152(4), A677 (2005)
Park S, Lee JW, Popov BN, J. Power Sources, 177(2), 457 (2008)
Weber AZ, Newman J, J. Electrochem. Soc., 153(12), A2205 (2006)
Kim S, Mench MM, J. Electrochem. Soc., 156(3), B353 (2009)
Cindrella L, Kannan AM, Ahmad R, Thommes M, Int. J. Hydrog. Energy, 34(15), 6377 (2009)
Wang YX, Al Shakhshir S, Li XG, Appl. Energy, 88(6), 2168 (2011)
Schweiss R, Steeb M, Wilde PM, Fuel Cells, 10, 1176 (2010)
Ahn M, Cho YH, Cho YH, Kim J, Jung N, Sung YE, Electrochim. Acta, 56(5), 2450 (2011)
Kaviany M, Principles of heat transfer in porous media, Springer-Verlag, New York (1991).
Park S, Popov BN, Electrochim. Acta, 54(12), 3473 (2009)
Kong CS, Kim DY, Lee HK, Shul YG, Lee TH, J. Power Sources, 108(1-2), 185 (2002)
Lin GY, Van Nguyen T, J. Electrochem. Soc., 152(10), A1942 (2005)
Springer TE, Raistrick ID, J. Electrochem. Soc., 136, 1594 (1989)
Raistrick ID, Electrochim. Acta, 35, 1579 (1990)
Ciureanu M, Roberge R, J. Phys. Chem. B, 105(17), 3531 (2001)
Bultel Y, Wiezell K, Jaouen F, Ozil P, Lindbergh G, Electrochim. Acta, 51(3), 474 (2005)
Springer TE, Wilson MS, Gottesfeld S, J. Electrochem. Soc., 135, 1594 (1989)