ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received August 16, 2013
Accepted February 21, 2014
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Efficient storage and utilization of CO2 in open raceway ponds for cultivation of microalgae

Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran 1Department of Chemical Engineering, Tehran South Branch, Islamic Azad University, Tehran, Iran 2Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
m.asadollahzadeh@srbiau.ac.ir
Korean Journal of Chemical Engineering, August 2014, 31(8), 1425-1432(8), 10.1007/s11814-014-0059-6
downloadDownload PDF

Abstract

For efficient storage and utilization of CO2 in open raceway ponds, the effects of cultural and operational parameters were studied. A 10 m2 indoors raceway pond was operated to determine CO2 storage capacity, average rate of absorbed CO2 losses and mass transfer coefficient for CO2 outgassing from various pH, salinity and alkalinity regimes of culture medium; mixing velocities and culture depths. Average rate of CO2 outgassing for saltwater (35 ppt salinity) at 40 meq/L alkalinity was 40-fold higher than seawater (35 ppt salinity and 2.3 meq/L alkalinity) at pH 8. Operating at lower pHs or salinities aggravated CO2 outgassing. An empirical equation for CO2 outgassing average mass transfer coefficient, KL, was developed as a function of mixing velocity and depth. Nannochloropsis sp. PTCC6016 was cultivated in the pond for 14 days. Due to higher amount of outgassing, CO2 utilization efficiency declined as the productivity in the pond decreased.

References

Chisti Y, Biotechnol. Adv., 25, 294 (2007)
Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS, Bioresour. Technol., 102(1), 71 (2011)
Harun R, Singh M, Forde G, Danquah M, Renew. Sust. Energ. Rev., 14, 1037 (2010)
Sheehan J, Dunahay T, Benemann J, Roessler P, A look back at the U.S. department of energy’s aquatic species program . biodiesel from algae, National Renewable Energy Laboratory, USA, NREL/TP-580-24190 (1988).
Demirbas A, Energy Conv. Manag., 51(12), 2738 (2010)
Becker EW, Microalgae: Biotechnology and microbiology, Cambridge University Press, Cambridge (1994).
Rubio FC, Fernandez FGA, Perez JAS, Camacho FG, Grima EM, Biotechnol. Bioeng., 62(1), 71 (1999)
Benemann JR, Tillett DM, Weissman JC, Trends Biotechnol., 5, 47 (1987)
Weissman JC, Tillet DM, Goebel RP, Design and operation of an outdoor microalgae test facility, Solar Energy Research Institute, USA, SERI/STR-232-3569 (1987).
Richmond A, CRC handbook of microalgal mass culture, CRC Press, USA (1986).
Smutek R, Benes V, Dittrt F, Algological Studies, 46, 297 (1975)
Livansky K, Algological Studies, 71, 111 (1993)
Miron AS, Camacho FG, Gomez AC, Grima EM, Chisti Y, AIChE J., 46(9), 1872 (2000)
Livansky K, Doucha J, Algological Studies, 87, 145 (1997)
Babcock RW, Malda J, Radway JC, J. Appl. Phycol., 14, 169 (2002)
Moazami N, Ranjbar R, Ashori A, Tangestani M, Nejad AS, Biomass Bioenerg., 35(5), 1935 (2011)
Moazami N, Ashori A, Ranjbar R, Tangestani M, Eghtesadi R, Nejad AS, Biomass Bioenerg., 39, 449 (2012)
Guillard RRL, Ryther JH, Can. J. Microbiol., 8, 229 (1962)
APHA, Standard methods for the examination of water and waste-water, 5th Ed., American Public Health Association (2012).
OECD SIDS, Sodium Bicarbonate, UNEP Publications (2002).
Weissman JC, Goebel RP, Benemann JR, Biotechnol. Bioeng., 3, 336 (1988)
Bowie GL, Mills WB, Porcella DB, Campbell CL, Pagenkopf JR, Rupp GL, Johnson KM, Chan PWH, Gherini SA, Chamberlin CE, Rates, constants, and kinetics formulations in surface water quality modeling (2th Ed.), U.S. Environmental Protection Agency (1985).
Dickson AG, Sabine CL, Christian JR, Guide to best practices for ocean CO2 measurements, PICES Special Publication (2007).
Emerson S, Limnol. Oceanogr, 20, 743 (1975)
Livansky K, Prokes B, Biotechnol. Bioeng. Symp., 4, 513 (1973)
Grima EM, Perez JAS, Camacho FG, Medina AR, J. Chem. Technol. Biotechnol., 56, 329 (1993)
Contreras Gomez A., Caracterizacio´n de una columna de burbujeo con recirculacio´n interna. Aplicacio´n al cultivo de Phaeodactylum tricornutum, Ph.D. Thesis, Universidad de Almeria, Spain (1996).
Dickson AG, Millero FJ, Deep-Sea Res., 34, 1733 (1987)
Millero FJ, Roy RN, Croat. Chem. Acta, 70, 1 (1997)
Weiss RF, Mar. Chem., 2, 203 (1974)
Sobczuk TM, Camacho FG, Rubio FC, Fernandez FGA, Grima EM, Biotechnol. Bioeng., 67(4), 465 (2000)
Weissman JC, Goebel RP, Design and analysis of microalgal open pond systems for the purpose of producing fuels, Solar Energy Research Institute, USA, SERI/STR-231-2840 (1987).
Rutgersson A, Smedman A, J. Mar. Syst., 80, 125 (2010)
Jeffery CD, Woolf DK, Robinsonand IS, Donlon CJ, Ocean Modelling, 19, 161 (2007)
Culberson SD, Piedrahita RH, Ecol. Model., 89, 231 (1996)
Livansky K, Kajan M, Pilarski P, Algological Studies, 70, 97 (1993)
Benemann JR, Tillett D, Effects of fluctuating environments on the selection of high yielding microalgae, Solar Energy Research Institute, USA, SERI/SP-231-3071 (1987).
Talbot P, Gortares MP, Lencki RW, de la Noue J, Biotechnol. Bioeng., 37, 834 (1991)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로