Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received September 9, 2013
Accepted February 24, 2014
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Experimental study on performance of steam-water injector with central water nozzle arrangement
State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
dtchong@mail.xjtu.edu.cn
Korean Journal of Chemical Engineering, September 2014, 31(9), 1539-1546(8), 10.1007/s11814-014-0067-6
Download PDF
Abstract
The steam-water injector (SI) is a simple mechanical device that has been widely used in industry. We did an experimental study to find the influence of physical and geometrical parameters on performance of the SI. The physical parameters studied were steam inlet pressure, water inlet pressure and water inlet temperature. Whereas, the geometrical parameters studied were steam nozzle area ratio, area ratio of steam nozzle to water nozzle and the mixing_x000D_
section converging angle. Pump head was introduced to evaluate the lifting-pressure performance of the SI under different operating and geometrical conditions. Optimal values of steam nozzle area ratio and mixing section converging angle were 1.3 and 11.6o respectively, for the present work, and optimal value of area ratio of steam nozzle to water nozzle increased with increasing water inlet pressure. Two head-capacity curves were introduced to highlight the effect_x000D_
of various physical and geometrical parameters on the performance of SI.
Keywords
References
Deberne N, Leone JF, Duque A, Lallemand A, Int. J. Multiph. Flow, 25(5), 841 (1999)
Yan JJ, Shao SF, Liu JP, Zhang Z, Appl. Therm. Eng., 25, 1153 (2005)
Bartosiewicz Y, Aidoun Z, Mercadier Y, Appl. Therm. Eng., 26, 604 (2006)
Srisastra P, Aphornratana S, Appl. Therm. Eng., 25, 2247 (2005)
Fujita I, Yoshie M, Takezaki K, Oceans 2007 Europe International Conference, Aberdeen, Scotland, 1221 (2007)
Kumar RS, Mani A, Kumaraswamy S, Desalination, 179(1-3), 345 (2005)
Kumar RS, Kumaraswamy S, Mani A, Desalination, 204(1-3), 437 (2007)
Malibashev SK, At. Energ., 79, 498 (1995)
Cattadori G, Galbiati L, Mazzocchi L, Vanini P, Int. J. Multiph. Flow, 21(4), 591 (1995)
Narabayashi T, Mizumachi W, Michitugu M, Nucl. Eng. Des., 175, 147 (1997)
Narabayashi T, Mizumachi W, Michitugu M, Ohmori S, Nucl. Eng. Des., 200, 261 (2000)
Beithou N, Aybar HS, J. Eng. Gas Turb. Power, 123, 693 (2001)
Beithou N, Aybar HS, J. Eng. Gas Turb. Power, 123, 701 (2001)
Kim DS, Lee Y, Lee DH, Korean J. Chem. Eng., 26(1), 288 (2009)
Yan JJ, Wu XZ, Chong DT, Liu JP, Heat Transfer Eng., 32, 88 (2011)
Ruangtrakoon N, Aphornratana S, Sriveerakul T, Exp. Therm. Fluid Sci., 35, 676 (2011)
Dai XC, Huo J, Appl. Mech. Mater., 130, 1703 (2012)
Shah A, Chughtai IR, Inayat MH, Int. J. Multiph. Flow, 37(10), 1305 (2011)
Shah A, Chughtai IR, Inayat MH, Int. J. Heat Mass Transf., 58(1-2), 62 (2013)
Trela M, Kwidzinski R, Butrymowicz D, Karwacki J, Appl. Therm. Eng., 30, 340 (2010)
Trela M, Kwidzinski R, Arch. Thermody., 29, 41 (2008)
Trela M, Kwidzinski R, Butrymowicz D, Chem. Process Eng., 29, 455 (2008)
Yan JJ, Chong DT, Wu XZ, Appl. Therm. Eng., 30, 623 (2010)
Cai Q, Tong M, Bai X, Korean J. Chem. Eng., 29(4), 513 (2012)
Munson BR, Young DF, Okiishi TH, Fundamentals of fluid mechanics, Inc., Wiley (2005)
Zeng DL, Zhao LJ, Xiao Y, Proceedings of the International Conference on Energy Conversion and Application, Wuhan, China, 1, 65 (2001)
Cengel YA, Boles MA, Thermodynamics - an engineering approach, McGraw Hill (2006)
Volk M, Pump characteristics and applications, CRC Press, Taylor and Francis Group (2005)
Yan JJ, Shao SF, Liu JP, Zhang Z, Appl. Therm. Eng., 25, 1153 (2005)
Bartosiewicz Y, Aidoun Z, Mercadier Y, Appl. Therm. Eng., 26, 604 (2006)
Srisastra P, Aphornratana S, Appl. Therm. Eng., 25, 2247 (2005)
Fujita I, Yoshie M, Takezaki K, Oceans 2007 Europe International Conference, Aberdeen, Scotland, 1221 (2007)
Kumar RS, Mani A, Kumaraswamy S, Desalination, 179(1-3), 345 (2005)
Kumar RS, Kumaraswamy S, Mani A, Desalination, 204(1-3), 437 (2007)
Malibashev SK, At. Energ., 79, 498 (1995)
Cattadori G, Galbiati L, Mazzocchi L, Vanini P, Int. J. Multiph. Flow, 21(4), 591 (1995)
Narabayashi T, Mizumachi W, Michitugu M, Nucl. Eng. Des., 175, 147 (1997)
Narabayashi T, Mizumachi W, Michitugu M, Ohmori S, Nucl. Eng. Des., 200, 261 (2000)
Beithou N, Aybar HS, J. Eng. Gas Turb. Power, 123, 693 (2001)
Beithou N, Aybar HS, J. Eng. Gas Turb. Power, 123, 701 (2001)
Kim DS, Lee Y, Lee DH, Korean J. Chem. Eng., 26(1), 288 (2009)
Yan JJ, Wu XZ, Chong DT, Liu JP, Heat Transfer Eng., 32, 88 (2011)
Ruangtrakoon N, Aphornratana S, Sriveerakul T, Exp. Therm. Fluid Sci., 35, 676 (2011)
Dai XC, Huo J, Appl. Mech. Mater., 130, 1703 (2012)
Shah A, Chughtai IR, Inayat MH, Int. J. Multiph. Flow, 37(10), 1305 (2011)
Shah A, Chughtai IR, Inayat MH, Int. J. Heat Mass Transf., 58(1-2), 62 (2013)
Trela M, Kwidzinski R, Butrymowicz D, Karwacki J, Appl. Therm. Eng., 30, 340 (2010)
Trela M, Kwidzinski R, Arch. Thermody., 29, 41 (2008)
Trela M, Kwidzinski R, Butrymowicz D, Chem. Process Eng., 29, 455 (2008)
Yan JJ, Chong DT, Wu XZ, Appl. Therm. Eng., 30, 623 (2010)
Cai Q, Tong M, Bai X, Korean J. Chem. Eng., 29(4), 513 (2012)
Munson BR, Young DF, Okiishi TH, Fundamentals of fluid mechanics, Inc., Wiley (2005)
Zeng DL, Zhao LJ, Xiao Y, Proceedings of the International Conference on Energy Conversion and Application, Wuhan, China, 1, 65 (2001)
Cengel YA, Boles MA, Thermodynamics - an engineering approach, McGraw Hill (2006)
Volk M, Pump characteristics and applications, CRC Press, Taylor and Francis Group (2005)