Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received August 16, 2013
Accepted April 8, 2014
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Adsorption of chromium (VI) on functionalized and non-functionalized carbon nanotubes
Nabisab Mujawar Mubarak1 2†
Raj Kogiladas Thines1
Noor Rosyidah Sajuni1
Ezzat Chan Abdullah3
Jaya Narayan Sahu4
Poobalan Ganesan5
Natesan Subramanian Jayakumar2
1Department of Chemical and Petroleum Engineering, Faculty of Engineering, UCSI University, Kuala Lumpur 56000, Malaysia 2Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia 3Malaysia - Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Semarak, Kuala Lumpur 54100, Malaysia 4Department of Petroleum and Chemical Engineering, Faculty of Engineering, Institut Teknologi Brunei, Tungku Gadong, P. O. Box 2909, Brunei Darussalam 5Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
Korean Journal of Chemical Engineering, September 2014, 31(9), 1582-1591(10), 10.1007/s11814-014-0101-8
Download PDF
Abstract
We did a comparative study on the adsorption capacity of Cr (VI) between functionalized carbon nanotubes (CNTs) and non-functionalized CNTs. The statistical analysis reveals that the optimum conditions for the highest removal of Cr (VI) are at pH 9, with dosage 0.1 gram, agitation speed and time of 120 rpm and 120 minutes, respectively. For the initial concentration of 1.0 mg/l, the removal efficiency of Cr (VI) using functionalized CNTs was 87.6% and 83% of non-functionalized CNTs. The maximum adsorption capacities of functionalized and non-functionalized CNTs were 2.517 and 2.49 mg/g, respectively. Langmuir and Freundlich models were adopted to study the adsorption isotherm, which provided a KL and KF value of 1.217 L/mg and 18.14 mg^(1-n)Ln/g functionalized CNT, while 2.365 L/mg and 2.307 mg^(1-n)Ln/g for non-functionalized CNTs. This result proves that functionalized CNTs are a better adsorbent with a higher adsorption capacity compared with the non-functionalized CNTs.
References
Gupta VK, Agarwal S, Saleh TA, Water Res., 45, 1 (2011)
Li YH, Wang SG, Wei JQ, Zhang XF, Xu CL, Luan ZK, Wu DH, Wei BQ, Chem. Phys. Lett., 357(3-4), 263 (2002)
Kaufman DB, Am. J. Dis. Child., 119, 374 (1970)
Boddu VM, Abburi K, Talbott JL, Smith ED, Haasch R, Water Res., 42, 633 (2008)
Kandah MI, Meunier JL, J. Hazard. Mater., 146(1-2), 283 (2007)
Hsieh SH, Horng JJ, Tsai CK, J. Mater. Res., 21, 1269 (2006)
Panoyotova MI, Waste Manage., 21, 671 (2001)
Li YH, Wang SG, Cao AY, Zhao D, Zhang XF, Xu CL, Luan ZK, Ruan DB, Liang J, Wu DH, Wei BQ, Chem. Phys. Lett., 350(5-6), 412 (2001)
Kuh SE, Kim DS, Environ. Technol., 21, 883 (2000)
Park YJ, Jung KH, Park KK, J. Colloid Interface Sci., 171(1), 205 (1995)
Dimitrova SV, Mehandgiev DR, Water Res., 32, 3289 (1998)
Iijima S, Nature, 354, 56 (1991)
Rouff RS, Lorents DC, Carbon, 33, 925 (1995)
Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, Ghaemi HF, Thio T, Nature, 382(6586), 54 (1996)
Terrones M, Annu. Rev. Mater. Res., 33, 419 (2003)
Li YH, Zhu YQ, Zhao YM, Wu DH, Luan ZK, Diam Relat Mater., 15, 90 (2006)
Chen CL, Hu J, Xu D, Tan XL, Meng YD, Wang XK, J. Colloid Interface Sci., 323(1), 33 (2008)
Mubarak NM, Ruthiraan M, Sahu JN, Abdullah EC, Jayakumar NS, Sajuni NR, Tan J, Inter. J. Nanosci., 12(6), 1350044 (2013)
Mubarak NM, Alicia RF, Abdullah EC, Sahu JN, Ayu Haslija AB, Tan J, J. Environ. Chem. Eng., 1, 486 (2013)
Wu CH, J. Colloid Interface Sci., 311(2), 338 (2007)
Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, Kallitsis I, Galiotis C, Carbon, 46, 833 (2008)
Mubarak NM, Yusof F, Alkhatib MF, Chem. Eng. J., 168(1), 461 (2011)
Balasubramanian K, Burghard M, Small, 1, 180 (2005)
Oye MM, Yim S, Fu A, Schwanfelder K, Meyyapan M, Nguyen CV, J. Nanosci. Nanotechnol., 10, 4082 (2010)
Yang ST, Li JX, Shao DD, Hu J, Wang XK, J. Hazard. Mater., 166(1), 109 (2009)
Laszlo K, Podkoscielny P, Dabrowski A, Appl. Surf. Sci., 252(16), 5752 (2006)
Wang SJ, Hu WX, Liao DW, Ng CF, Au C, Catal. Today, 93, 711 (2005)
Li YH, Liu FQ, Xia B, Du QJ, Zhang P, Wang DC, Wang ZH, Xia YZ, J. Hazard. Mater., 177(1-3), 876 (2010)
Zhang J, Zou HL, Qing Q, Yang YL, Li QW, Liu ZF, Guo XY, Du ZL, J. Phys. Chem. B, 107(16), 3712 (2003)
Agboola AE, Pike RW, Hertwig TA, Lou HH, Clean Technol. Environ. Policy, 9, 289 (2007)
Yan LH, Zechao D, Jun D, Dehai W, Zhaokun L, Yanqiu Z, Water Res., 39, 605 (2005)
Li YH, Wang SG, Wei JQ, Zhang XF, Xu CL, Luan ZK, Wu DH, Wei BQ, Chem. Phys. Lett., 357(3-4), 263 (2002)
Kaufman DB, Am. J. Dis. Child., 119, 374 (1970)
Boddu VM, Abburi K, Talbott JL, Smith ED, Haasch R, Water Res., 42, 633 (2008)
Kandah MI, Meunier JL, J. Hazard. Mater., 146(1-2), 283 (2007)
Hsieh SH, Horng JJ, Tsai CK, J. Mater. Res., 21, 1269 (2006)
Panoyotova MI, Waste Manage., 21, 671 (2001)
Li YH, Wang SG, Cao AY, Zhao D, Zhang XF, Xu CL, Luan ZK, Ruan DB, Liang J, Wu DH, Wei BQ, Chem. Phys. Lett., 350(5-6), 412 (2001)
Kuh SE, Kim DS, Environ. Technol., 21, 883 (2000)
Park YJ, Jung KH, Park KK, J. Colloid Interface Sci., 171(1), 205 (1995)
Dimitrova SV, Mehandgiev DR, Water Res., 32, 3289 (1998)
Iijima S, Nature, 354, 56 (1991)
Rouff RS, Lorents DC, Carbon, 33, 925 (1995)
Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, Ghaemi HF, Thio T, Nature, 382(6586), 54 (1996)
Terrones M, Annu. Rev. Mater. Res., 33, 419 (2003)
Li YH, Zhu YQ, Zhao YM, Wu DH, Luan ZK, Diam Relat Mater., 15, 90 (2006)
Chen CL, Hu J, Xu D, Tan XL, Meng YD, Wang XK, J. Colloid Interface Sci., 323(1), 33 (2008)
Mubarak NM, Ruthiraan M, Sahu JN, Abdullah EC, Jayakumar NS, Sajuni NR, Tan J, Inter. J. Nanosci., 12(6), 1350044 (2013)
Mubarak NM, Alicia RF, Abdullah EC, Sahu JN, Ayu Haslija AB, Tan J, J. Environ. Chem. Eng., 1, 486 (2013)
Wu CH, J. Colloid Interface Sci., 311(2), 338 (2007)
Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, Kallitsis I, Galiotis C, Carbon, 46, 833 (2008)
Mubarak NM, Yusof F, Alkhatib MF, Chem. Eng. J., 168(1), 461 (2011)
Balasubramanian K, Burghard M, Small, 1, 180 (2005)
Oye MM, Yim S, Fu A, Schwanfelder K, Meyyapan M, Nguyen CV, J. Nanosci. Nanotechnol., 10, 4082 (2010)
Yang ST, Li JX, Shao DD, Hu J, Wang XK, J. Hazard. Mater., 166(1), 109 (2009)
Laszlo K, Podkoscielny P, Dabrowski A, Appl. Surf. Sci., 252(16), 5752 (2006)
Wang SJ, Hu WX, Liao DW, Ng CF, Au C, Catal. Today, 93, 711 (2005)
Li YH, Liu FQ, Xia B, Du QJ, Zhang P, Wang DC, Wang ZH, Xia YZ, J. Hazard. Mater., 177(1-3), 876 (2010)
Zhang J, Zou HL, Qing Q, Yang YL, Li QW, Liu ZF, Guo XY, Du ZL, J. Phys. Chem. B, 107(16), 3712 (2003)
Agboola AE, Pike RW, Hertwig TA, Lou HH, Clean Technol. Environ. Policy, 9, 289 (2007)
Yan LH, Zechao D, Jun D, Dehai W, Zhaokun L, Yanqiu Z, Water Res., 39, 605 (2005)