ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received March 18, 2014
Accepted April 16, 2014
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

High-temperature CO2 sorption on Na2CO3-impregnated layered double hydroxides

Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 136-713, Korea 1High Efficiency and Clean Energy Research Division, Korea Institute of Energy Research, 152, Gajeong-ro, Yuseong-gu, Daejeon 305-343, Korea
kibonglee@korea.ac.kr
Korean Journal of Chemical Engineering, September 2014, 31(9), 1668-1673(6), 10.1007/s11814-014-0116-1
downloadDownload PDF

Abstract

Layered double hydroxide (LDH), one of representative high-temperature CO2 sorbents, has many advantages, including stable CO2 sorption, fast sorption kinetics, and low regeneration temperature. However, CO2 sorption uptake on LDH is not high enough for practical use; thus it is usually enhanced by impregnation with alkali metals such as K2CO3. In this study, LDH was impregnated with Na2CO3, and analyses based on scanning electron microscopy, N2 gas physisorption, in situ X-ray diffraction, and Fourier transform infrared spectroscopy were carried out to elucidate the characteristics of sorbents and the mechanism of CO2 sorption. Although the surface area of LDH decreased after Na2CO3 impregnation, CO2 sorption uptake was greatly enhanced by the additional basicity of Na2CO3. The crystal structure of Na2CO3 in the Na2CO3-impregnated LDH changed from monoclinic to hexagonal with increasing temperature,_x000D_ and the sorbed-CO2 was stored in the form of carbonate. Thermogravimetric analysis was used to measure CO2 sorption uptake at 200-600 ℃. The sample of Na2CO3 : LDH=0.35 : 1 weight ratio had the largest CO2 sorption uptake among the tested sorbents, and the CO2 sorption uptake tended to increase even after 400 ℃.

References

Parry ML, Carter TR, Hulme M, Global Environ., 6, 1 (1996)
Oppenheimer M, Petsonk A, Climatic Change, 73, 195 (2005)
Svensson R, Odenberger M, Johnsson F, Stromberg L, Energy Conv. Manag., 45(15-16), 2343 (2004)
Peltier R, Power, 152(2), 38 (2008)
Wall TF, P. Combust. Inst., 31, 31 (2007)
Xu X, Song C, Andresen JM, Miller BG, Scaroni AW, Micropor. Mesopor. Mater., 62, 29 (2003)
Siriwardane RV, Shen MS, Fisher EP, Energy Fuels, 19(3), 1153 (2005)
Na BK, Koo KK, Eum HM, Lee H, Song HK, Korean J. Chem. Eng., 18(2), 220 (2001)
Mao CF, Vannice MA, Appl. Catal. A: Gen., 111(2), 151 (1994)
Wu SF, Beum TH, Yang JI, Kim JN, Ind. Eng. Chem. Res., 46(24), 7896 (2007)
Kuramoto K, Fujimoto S, Morita A, Shibano S, Suzuki Y, Hatano H, Lin SY, Harada M, Takarada T, Ind. Eng. Chem. Res., 42(5), 975 (2003)
Reddy EP, Smirniotis PG, J. Phys. Chem. B, 108(23), 7794 (2004)
Ida JI, Lin YS, Environ. Sci. Technol., 37, 1999 (2003)
Ochoa-Fernandez E, Rusten HK, Jakobsen HA, Ronning M, Holmen A, Chen D, Catal. Today, 106(1-4), 41 (2005)
Guzman-Velderrain V, Delgado-Vigil D, Collins-Martinez V, Ortiz AL, J. New Mater. Electron. Syst., 11, 131 (2008)
Lee KB, Verdooren A, Caram HS, Sircar S, J. Colloid Interface Sci., 308(1), 30 (2007)
Kannan S, Kishore D, Hadjiivanov K, Knozinger H, Langmuir, 19(14), 5742 (2003)
Reddy MKR, Xu ZP, Lu GQ, da Costa JCD, Ind. Eng. Chem. Res., 45(22), 7504 (2006)
Ding Y, Alpay E, Chem. Eng. Sci., 55(17), 3461 (2000)
Yong Z, Mata V, Rodriguez AE, Ind. Eng. Chem. Res., 40(1), 204 (2001)
Hutson ND, Attwood BC, Adsorption, 14, 781 (2008)
Lee KB, Beaver MG, Caram HS, Sircar S, Ind. Eng. Chem. Res., 47(21), 8048 (2008)
Jang HM, Lee KB, Caram HS, Sircar S, Chem. Eng. Sci., 73, 431 (2012)
Wang Q, Tay HH, Ng DJW, Chen L, Liu Y, Chang J, Zhong Z, Luo J, Borgna A, ChemSusChem, 3, 965 (2010)
Yang JI, Kim JN, Korean J. Chem. Eng., 23(1), 77 (2006)
Lee JM, Min YJ, Lee KB, Jeon SG, Na JG, Ryu HJ, Langmuir, 26(24), 18788 (2010)
Hutson ND, Speakman SA, Payzant EA, Chem. Mater., 16, 4135 (2004)
Kim JW, Lee HG, Metall. Mater. Trans. B, 32, 17 (2001)
Othman MR, Rasid NM, Fernando WJN, Chem. Eng. Sci., 61(5), 1555 (2006)
Lopez T, Bosch P, Asomoza M, Gomez R, Ramos E, Mater. Lett., 31, 311 (1997)
Di Cosimo JI, Diez VK, Xu M, Iglesia E, Apesteguia CR, J. Catal., 178(2), 499 (1998)
Tichit D, Bennani MN, Figueras F, Ruiz JR, Langmuir, 14(8), 2086 (1998)
Arakcheeva A, Chapuis G, Acta Crystallogr. B, 61, 601 (2005)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로