Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received March 11, 2014
Accepted July 13, 2014
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Synthesis, structure and photocatalytic activity of calcined Mg-Al-Ti-layered double hydroxides
Centre National des Recherches en Sciences des Matériaux (CNRSM), Pôle Technologique de Borj Cedria, Tunisia 1Faculté des Sciences de Tunis (FST), Tunisia
hosnikhaled@gmail.com
Korean Journal of Chemical Engineering, January 2015, 32(1), 104-112(9), 10.1007/s11814-014-0199-8
Download PDF
Abstract
Mg-Al-Ti layered double hydroxides (LDH), consisting of di-, tri- and tetra-valent cations with different Al3+/Ti4+ ratio, have been synthesized by co-precipitation which was demonstrated as efficient visible-light photocatalysts. The structure and chemical composition of the compound were characterized by PXRD, FT-IR, SAA, N2 adsorption-desorption isotherms, and DSC techniques. It is found that no hydrotalcites structure were formed for Ti4+/(Ti4++ Al3+)>0.5 and the substitution of Ti(IV) for Al(III) in the layer increases the thermal stability of the resulting LDH_x000D_
materials. The calcined sample containing titanium showed relatively high adsorption capacity for MB as compared to that without titanium. Results show that the pseudo-second-order kinetic model and the Langmuir were found to correlate the experimental data well. The photocatalytic activity was evaluated for the degradation of the methylene blue. The photocatalytic activity increased with the increase of the Al/Ti cationic ratio. 71% of the dye could be removed by_x000D_
the Mg/Al/Ti-LDH with the cationic ratio Al/Ti=0 : 1 and calcined at 500 ℃.
Keywords
References
Vandevivere PC, Bianchi R, Verstraete W, J. Chem. Technol. Biotechnol., 72(4), 289 (1998)
Zollinger H, Color Chemistry, VCH, Weinheim, 2nd Ed. (1991)
Joon-Yeob L, Wan-Kuen J, Environ. Eng. Res., 17(4), 179 (2012)
Kumaresan L, Palanisamy B, Palanichamy M, Murugesan V, Environ. Eng. Res., 16(2), 81 (2011)
Das N, Samal A, Micropor. Mesopor. Mater., 72, 219 (2004)
Allmann R, Acta Crystallogr. Sect. B, 24, 972 (1986)
Miyata S, Clays Clay Miner., 23, 369 (1975)
Taylor HFW, Miner. Mag., 39, 377 (1973)
Valcheva-Traykova M, Davidova V, Weiss A, J. Mater. Sci., 28, 2157 (1983)
Cavani F, Trifiro F, Vaccari A, Catal. Today, 11, 173 (1991)
Kooli F, Kosuge K, Tsunashima A, J. Mater. Sci., 30(18), 4591 (1995)
Kooli F, Kosuge K, Tsunashima A, J. Solid State Chem., 118, 4591 (1995)
Fernandez JM, Barriga C, Ulibarri MA, Labajos FM, Rives V, Chem. Mater., 9, 312 (1997)
Saber O, Tagaya H, J. Incl. Phenom. Macrocyclic Chem., 45, 109 (2003)
Reichle WT, J. Catal., 94, 547 (1985)
Saber O, Tagaya H, J. Inclusion Phenom., 45, 17 (2003)
Leroux F, Adachi-Pagano M, Intissar M, ChauvieAre S, Forano C, Besse JP, J. Mater. Chem., 11, 105 (2001)
Busetto C, Del Piero G, Manara G, J. Catal., 85, 260 (1984)
Zhang WH, Guo XD, He J, Qian ZY, J. Eur. Ceram. Soc., 28, 1623 (2008)
Shu X, Zhang W, He J, Gao F, Zhu Y, Solid State Sci., 8, 634 (2006)
Crepaldi EL, Trondo J, Ardoso LP, Valim JB, J. Colloid Surf. A: Physicochem. Eng. Aspects, 211, 103 (2002)
You Y, Zhao H, Vance GF, J. Appl. Clay Sci., 21, 217 (2002)
Reichle WT, Solid State Ionics, 22, 713 (1986)
Ehlsissen KT, Delahaye-Vidal A, Genin P, Figlarz M, Willmann P, J. Mater. Chem., 3, 883 (1993)
Das N, Sandal A, Micropor. Mesopor. Mater., 72, 219 (2004)
Hernandez-Moreno MJ, Ulibarri MA, Rendon JL, Serna C, J. Phys. Chem. Miner., 12, 34 (1985)
Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti R, Rouquerol J, Sieminiewska T, Pure Appl. Chem., 57, 603 (1985)
Reichle WT, Kang SY, Everhardt DS, J. Catal., 101, 352 (1986)
Tichit D, Das N, Coq B, Durand R, Chem. Mater., 14, 1530 (2002)
Saber O, Tagaya H, Mater. Chem. Phys., 108(2-3), 449 (2008)
Kannan N, Indian J. Environ. Protec., 11(7), 514 (1991)
Lagergren S, Handlingar, 24(4), 139 (1898)
Ho LC, Rudnick G, Rix HW, Shields JC, Daniel H, McIntosh DH, Filippenko AV, Sargent WLW, Eracleous M, Astrophysical. Journal, 541, 120 (2000)
Ho YS, McKay G, Process Biochem., 34(5), 451 (1999)
Langmuir I, Chem. Soc., 40, 1361 (1918)
Freundlich HMF, Phys. Chem., 57, 385 (1906)
Barka N, Assabbane A, Nounah A, Albourine A, Ait-Ichou Y, Sciences Technologie, B27, 09 (2008)
Fu HB, Pan CS, Yao WQ, Zhu YF, J. Phys. Chem., 109, 22432 (2005)
Zollinger H, Color Chemistry, VCH, Weinheim, 2nd Ed. (1991)
Joon-Yeob L, Wan-Kuen J, Environ. Eng. Res., 17(4), 179 (2012)
Kumaresan L, Palanisamy B, Palanichamy M, Murugesan V, Environ. Eng. Res., 16(2), 81 (2011)
Das N, Samal A, Micropor. Mesopor. Mater., 72, 219 (2004)
Allmann R, Acta Crystallogr. Sect. B, 24, 972 (1986)
Miyata S, Clays Clay Miner., 23, 369 (1975)
Taylor HFW, Miner. Mag., 39, 377 (1973)
Valcheva-Traykova M, Davidova V, Weiss A, J. Mater. Sci., 28, 2157 (1983)
Cavani F, Trifiro F, Vaccari A, Catal. Today, 11, 173 (1991)
Kooli F, Kosuge K, Tsunashima A, J. Mater. Sci., 30(18), 4591 (1995)
Kooli F, Kosuge K, Tsunashima A, J. Solid State Chem., 118, 4591 (1995)
Fernandez JM, Barriga C, Ulibarri MA, Labajos FM, Rives V, Chem. Mater., 9, 312 (1997)
Saber O, Tagaya H, J. Incl. Phenom. Macrocyclic Chem., 45, 109 (2003)
Reichle WT, J. Catal., 94, 547 (1985)
Saber O, Tagaya H, J. Inclusion Phenom., 45, 17 (2003)
Leroux F, Adachi-Pagano M, Intissar M, ChauvieAre S, Forano C, Besse JP, J. Mater. Chem., 11, 105 (2001)
Busetto C, Del Piero G, Manara G, J. Catal., 85, 260 (1984)
Zhang WH, Guo XD, He J, Qian ZY, J. Eur. Ceram. Soc., 28, 1623 (2008)
Shu X, Zhang W, He J, Gao F, Zhu Y, Solid State Sci., 8, 634 (2006)
Crepaldi EL, Trondo J, Ardoso LP, Valim JB, J. Colloid Surf. A: Physicochem. Eng. Aspects, 211, 103 (2002)
You Y, Zhao H, Vance GF, J. Appl. Clay Sci., 21, 217 (2002)
Reichle WT, Solid State Ionics, 22, 713 (1986)
Ehlsissen KT, Delahaye-Vidal A, Genin P, Figlarz M, Willmann P, J. Mater. Chem., 3, 883 (1993)
Das N, Sandal A, Micropor. Mesopor. Mater., 72, 219 (2004)
Hernandez-Moreno MJ, Ulibarri MA, Rendon JL, Serna C, J. Phys. Chem. Miner., 12, 34 (1985)
Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti R, Rouquerol J, Sieminiewska T, Pure Appl. Chem., 57, 603 (1985)
Reichle WT, Kang SY, Everhardt DS, J. Catal., 101, 352 (1986)
Tichit D, Das N, Coq B, Durand R, Chem. Mater., 14, 1530 (2002)
Saber O, Tagaya H, Mater. Chem. Phys., 108(2-3), 449 (2008)
Kannan N, Indian J. Environ. Protec., 11(7), 514 (1991)
Lagergren S, Handlingar, 24(4), 139 (1898)
Ho LC, Rudnick G, Rix HW, Shields JC, Daniel H, McIntosh DH, Filippenko AV, Sargent WLW, Eracleous M, Astrophysical. Journal, 541, 120 (2000)
Ho YS, McKay G, Process Biochem., 34(5), 451 (1999)
Langmuir I, Chem. Soc., 40, 1361 (1918)
Freundlich HMF, Phys. Chem., 57, 385 (1906)
Barka N, Assabbane A, Nounah A, Albourine A, Ait-Ichou Y, Sciences Technologie, B27, 09 (2008)
Fu HB, Pan CS, Yao WQ, Zhu YF, J. Phys. Chem., 109, 22432 (2005)