ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received January 25, 2014
Accepted July 9, 2014
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Density measurement and equal density temperature of CO2+brine from Dagang - formation from 313 to 363 K

Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian, Liaoning 116024, P. R. China
Korean Journal of Chemical Engineering, January 2015, 32(1), 141-148(8), 10.1007/s11814-014-0193-1
downloadDownload PDF

Abstract

Densities of CO2+Dagang - formation brine solution were measured by a magnetic suspension balance (MSB) in the pressure range from (10 to 18) MPa, at the temperatures from (313.15 to 363.15) K and CO2 mass fractions at 0, 0.0101, 0.0198 and 0.0299. The experimental results revealed that the solution densities increased linearly with the increasing pressure and CO2 concentration, while decreasing with the increasing temperatures in the experimental range. When the temperature increased from (313.15 to 363.15) K, the slopes of the densities versus (vs.) CO2 mass fractions decreased from (0.193 to 0.106) g·cm-3. A correlation equation was developed based on thermodynamic theory and experimental data. The absolute average deviation between the correlation equation and the experimental data was 0.05%, and the maximum deviation was 0.37% for the density of CO2+water/brine solution in common_x000D_ geological storage conditions. According to the density of CO2 - free brine and apparent molar volume of CO2 in brine, the equal density temperature (Te) of CO2+Dagang brine solution was obtained at 464.67 K when pressure is 10MPa, which means that the density of brine dissolved with CO2 will be less than that of CO2-free brine when the temperature is higher than 464.67 K at 10MPa. In this work the formation temperature of the Dagang oilfield reservoir is from 313.15 K to 363.15 K, which is lower than the equal density temperature. Therefore, the safety of CO2 storage_x000D_ in Dagang oilfield reservoir can be guaranteed.

References

IPCC Third Assessment Report: Climate Change 2001 (TAR).
Englezos P, Lee JD, Korean J. Chem. Eng., 22(5), 671 (2005)
Figueroa JD, Fout T, Plasynski S, McIlvried H, Srivastava RD, Int. J. Greenh. Gas Control., 2, 9 (2008)
Benson SM, Cole DR, Element., 4, 325 (2008)
Acidi A, Hasib-ur-Rahman M, Larachi F, Abbaci A, Korean J. Chem. Eng., 31(6), 1043 (2014)
Zahid U, Lim Y, Jung J, Han C, Korean J. Chem. Eng., 28(3), 674 (2011)
Ji XY, Tan SP, Adidharma H, Radosz M, Ind. Eng. Chem. Res., 44(22), 8419 (2005)
Khattab IS, Bandarkar F, Fakhree MAA, Jouyban A, Korean J. Chem. Eng., 29(6), 812 (2012)
Haugan PM, Drange H, Nature, 357, 318 (1992)
Drange H, Haugan PM, Energy Convers. Manage., 33(5-8), 697 (1992)
Ohsumi T, Nakashiki N, Shitashima K, Hirama K, Energy Convers. Manage., 33, 685 (1992)
Song Y, Chen B, Nishio M, Akai M, Energy, 30(11-12), 2298 (2005)
Li ZW, Dong MZ, Li SL, Dai LM, J. Chem. Eng. Data, 49(4), 1026 (2004)
Zhang Y, Chang F, Song YC, Zhao JF, Zhan YC, Jian WW, J. Chem. Eng. Data, 56(3), 565 (2011)
Song Y, Jian W, Zhang Y, Yang M, Zhao J, Liu Y, Liu W, Shen Y, J. Chem. Eng. Data, 59, 1400 (2011)
Yan W, Huang S, Stenby EH, Int. J. Greenh. Gas. Control, 5(6), 1460 (2011)
Hu J, Duan Z, Zhu C, Chou I, Chem. Geol., 238(3-4), 249 (2007)
Lu C, Han WS, Lee SY, McPherson BJ, Lichtner PC, Adv. Water Res., 32(12), 1685 (2009)
Pruess K, Spycher N, Energy Conv. Manag., 48(6), 1761 (2007)
Rogers PSZ, Pitzer KS, J. Phys. Chem. Ref. Data, 11, 15 (1982)
Garcia JE, Lawrence Berkley National Laboratory Report, LBNL 49023 (2001)
Hnedkovsky L, Wood RH, Majer V, J. Chem. Thermodyn., 28(2), 125 (1996)
Song Y, Nishio M, Chen B, Someya S, Ohsumi T, J. Visualization., 6, 41 (2003)
King MB, Mubarak A, Kim JD, Bott TR, J. Supercrit. Fluids, 5, 296 (1992)
Hebach A, Oberhof A, Dahmen N, J. Chem. Eng. Data, 49(4), 950 (2004)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로