ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received May 30, 2014
Accepted July 13, 2014
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Measurement and correlation of excess molar volumes for mixtures of 1-propanol and aromatic hydrocarbons

1Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131 039, India 2Department of Chemical Engineering, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131 039, India 3Department of Chemical and Biomolecular Engineering, Yonsei University, 262, Seongsan-ro, Seodaemun-gu, Seoul 120-749, Korea
Korean Journal of Chemical Engineering, January 2015, 32(1), 168-177(10), 10.1007/s11814-014-0200-6
downloadDownload PDF

Abstract

Excess molar volumes (Vm E ) have been measured at 303.15 K for 1-propanol+benzene or toluene or o- or m- or p-xylene mixtures using V-shape dilatometer. The Vm E values, for an equimolar composition, vary in the order: benzene>toluene~m-xylene>o-xylene>p-xylene. The Vm E data have been used to calculate partial molar volumes, excess partial molar volumes, and apparent molar volumes of 1-propanol and aromatic hydrocarbons over the entire range of composition. The excess volume data have also been interpreted in terms of graph-theoretical approach and Prigogine-Flory-Patterson theory (PFP). While PFP theory fails to predict the Vm E values for systems with s-shaped Vm E versus x1 graph, the Vm E values calculated by graph theory compare reasonably well with the corresponding experimental values. This graph theory analysis has further yielded information about the state of aggregation of pure components as well as of the mixtures.

References

Ancillotti F, Fattore V, Fuel Process. Technol., 57(3), 163 (1998)
Karabektas M, Ergen G, Hosoz M, Fuel, 115, 855 (2014)
Kim D, Kim S, Oh S, No SY, Fuel, 125, 36 (2014)
Karavalakis G, Short D, Vu D, Villela M, Asa-Awuku A, Durbin TD, Fuel, 128, 410 (2014)
Li RN, Wang Z, Ni PY, Zhao Y, Li MD, Li LL, Fuel, 128, 180 (2014)
Foong TM, Morganti KJ, Brear MJ, da Silva G, Yang Y, Dryer FL, Fuel, 115, 727 (2014)
http://www.epa.gov/otaq/fuels/gasolinefuels/winterprograms/index.htm.
Chan QN, Bao YM, Kook S, Fuel, 130, 228 (2014)
Mejia A, Segura H, Cartes M, Fuel, 116, 183 (2014)
Sastry SS, Babu S, Vishwam T, Parvateesam K, Tiong HS, Physica B: Condensed Matter, 420, 40 (2013)
Kumar S, Cho JH, Park J, Moon I, Renewable and Sustainable Energy Reviews, 22, 46 (2013)
Hwang IC, Park SJ, Han KJ, In SJ, J. Ind. Eng. Chem., 18(1), 499 (2012)
Singh PP, Maken S, Pure Appl. Chem., 66, 449 (1994)
Kumar S, Maken A, Agarwal S, Maken S, J. Mol. Liq., 155, 115 (2010)
Rani M, Maken S, J. Ind. Eng. Chem., 18(5), 1694 (2012)
Redlich O, Kister AT, Ind. Eng. Chem., 40, 345 (1948)
Riddick JA, Bunger WB, Sakano TK, Organic Solvents, Physical properties and methods of purification, 4th Ed. Wiley, New York (1986)
Vogel AI, A Text Book of Practical Organic Chemistry, 4th Ed., ELBS Longman, London (1978)
Yadav BL, Maken S, Kalra KC, Singh KC, J. Chem. Thermodyn., 25, 1345 (1993)
Weissenberger A, Physical Methods of Organic Chemistry, Interscience, New York (1959)
Zarei HA, Jalili F, J. Chem. Thermodyn., 39(1), 55 (2007)
Zarei HA, Asadi S, Iloukhani H, J. Mol. Liq., 141, 25 (2008)
Iloukhani H, Samiey B, Moghaddasi MA, J. Chem. Thermodyn., 38(2), 190 (2006)
Park SJ, Han KJ, Gmehling J, Fluid Phase Equilib., 200(2), 399 (2002)
George J, Sastry NV, J. Chem. Thermodyn., 35(11), 1837 (2003)
Aralaguppi MI, Jadar CV, Aminabhavi TM, J. Chem. Eng. Data, 44, 446 (1999)
George J, Sastry NV, J. Chem. Eng. Data, 48(4), 977 (2003)
Kumaran MK, McGlashan ML, J. Chem. Thermodyn., 9, 259 (1977)
Gupta V, Maken S, Kalra KC, Singh KC, Indian J. Chem., 35, 508 (1996)
Maken S, Deshwal BR, Chadha R, Anu, Singh KC, Kim H, Park JW, Fluid Phase Equilib., 235(1), 42 (2005)
Kier LB, in Physico-chemical properties of drugs, Yalkowski SH, Sinkula AA, Valvani SC Eds., Marcel Dekker (1980)
Harary F, Graph theory. Addison Wesley, Reading, MA (1969)
Balaban AT, Chemical applications of graph theory, Academic Press, London (1976)
Rouvray DH, Reviews, 4, 173 (1971)
Kier LB, Hall LH, Molecular connectivity in chemistry and drug research, Academic Press, New York (1976)
Gahlyan S, Rani M, Maken S, J. Mol. Liq., 199, 42 (2014)
Patterson D, Delmas G, Discussions of the Faraday Society, 49, 98 (1970)
Flory PJ, J. Am. Chem. Soc., 87, 1833 (1965)
Abe A, Flory PJ, J. Am. Chem. Soc., 87, 1838 (1965)
Torres RB, Francesconi AZ, Volpe PLO, J. Mol. Liq., 110, 81 (2004)
Rani M, Maken S, Korean J. Chem. Eng., 30(8), 1636 (2013)
Rani M, Maken S, Thermochim. Acta, 559, 98 (2013)
Rani M, Agarwal S, Lahot P, Maken S, J. Ind. Eng. Chem., 19(5), 1715 (2013)
Iloukhani H, Almasi M, Thermochim. Acta, 495(1-2), 139 (2009)
Gahlyan S, Rani M, Maken S, Kwon H, Tak K, Moon I, J. Ind. Eng. Chem., DOI: 10.1016/j.jiec.2014.08.032. (2014)
Rani M, Gahlyan S, Om H, Verma N, Maken S, J. Mol. Liq., 194, 100 (2014)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로