Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received April 3, 2014
Accepted September 5, 2014
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
MnO/C nanocomposite prepared by one-pot hydrothermal reaction for high performance lithium-ion battery anodes
Department of Chemical Engineering, Dong-A University, Busan 604-714, Korea
jklee88@dau.ac.kr
Korean Journal of Chemical Engineering, January 2015, 32(1), 178-183(6), 10.1007/s11814-014-0265-2
Download PDF
Abstract
Among various candidates to replace the low capacity graphitic carbon anode in current lithium ion batteries (LIBs), manganese oxides possess the advantages of high lithium storage capacity, low cost, high intrinsic density, environmental friendliness and low lithium storage voltage, i.e., 0.5 V Li+/Li. Manganese oxides, however, have to be incorporated with conducting and porous matrix due to poor electrical conductivity and large volume expansions associated with conversion reaction upon cycling. In this study, a facile one-pot route was attempted for the synthesis of MnO/C nanocomposite for which Mn3O4 nanoparticles were grown in aqueous medium followed by carbon gel formation in a one-pot reactor. Thus obtained Mn3O4/C carbon gel was transformed into MnO/C nanocomposite by thermal annealing in an Ar flow. The MnO nanoparticles (60wt%) of 20-50 nm in diameter were well dispersed throughout the MnO/C composite. The MnO/C composite delivered reversible capacity of 541mAh g-1 with an excellent_x000D_
cycling stability over 100 cycles, while parent Mn3O4 lost most of its capacity in 10 cycles. The MnO/C composite also exhibited much higher rate capability than a commercial graphite anode. Hence, the MnO/C composite based on low cost materials and facile synthetic process could be an attractive candidate for large-scale energy storage applications.
References
Taberna L, Mitra S, Poizot P, Simon P, Tarascon JM, Nat. Mater., 5(7), 567 (2006)
Whittingham MS, MRS Bull., 33, 411 (2008)
Scrosati B, Garche J, J. Power Sources, 195(9), 2419 (2010)
Cabana J, Monconduit L, Larcher D, Palacin MR, Adv. Mater., 22, 170 (2010)
Tarascon JM, Phil. Trans. R. Soc., 368, 3227 (2010)
Chae C, Noh HJ, Lee JK, Scrosati B, Sun YK, Adv. Funct. Mater., DOI:10.1002/adfm.201303766. (2014)
Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM, Nature, 407, 496 (2000)
Kim SS, J. Korean Electrochem. Soc., 11, 211 (2008)
Zhang HJ, Tao HH, Jiang Y, Jiao Z, Wu MH, Zhao B, J. Power Sources, 195(9), 2950 (2010)
Cheng MY, Hwang BJ, J. Power Sources, 195(15), 4977 (2010)
Zhang WM, Wu XL, Hu JS, Guo YG, Wan LJ, Adv. Funct. Mater., 18(24), 3941 (2008)
Yoon T, Chae C, Sun YK, Zhao X, Kung HH, Lee JK, J. Mater. Chem., 21, 17325 (2011)
Wang HL, Cui LF, Yang YA, Casalongue HS, Robinson JT, Liang YY, Cui Y, Dai HJ, J. Am. Chem. Soc., 132(40), 13978 (2010)
Poizot P, Laruelle S, Grugeon S, Tarascon JM, J. Electrochem. Soc., 149, 1212 (2002)
Chae C, Kim JH, Kim JM, Sun YK, Lee JK, J. Mater. Chem., 22, 17870 (2012)
Yoon T, Kim J, Kim J, Lee JK, Energies, 6, 4830 (2013)
Chae C, Park H, Kim D, Kim J, Oh ES, Lee JK, J. Power Sources, 244, 214 (2013)
Ahn CW, Chung YH, Hahn BD, Park DS, Sung YE, Korean J. Chem. Eng., 29(8), 985 (2012)
Fang X, Lu X, Guo X, Mao Y, Hu YS, Wang J, Wang Z, Wu F, Liu H, Chen L, Electrochem. Commun., 12, 1520 (2010)
Zhong KF, Xia X, Zhang B, Li H, Wang ZX, Chen LQ, J. Power Sources, 195(10), 3300 (2010)
Zhong KF, Zhang B, Luo SH, Wen W, Li H, Huang XJ, Chen LQ, J. Power Sources, 196(16), 6802 (2011)
He Y, Huang L, Cai JS, Zheng XM, Sun SG, Electrochim. Acta, 55(3), 1140 (2010)
Lian PC, Zhu XF, Xiang HF, Li Z, Yang WS, Wang HH, Electrochim. Acta, 56(2), 834 (2010)
Kang M, Park ED, Kim JM, Yie JE, Appl. Catal. A: Gen., 327(2), 261 (2007)
Feng Q, Yanagisawa K, Yamasaki N, J. Porous Mater., 5, 153 (1998)
Ching S, Roark JL, Chem. Mater., 9, 750 (1997)
Malinger KA, Ding YS, Sithambaram S, Espinal L, Gomez S, Suib SL, J. Catal., 239(2), 290 (2006)
Gao J, Lowe MA, Abruna HD, Chem. Mater., 23, 3223 (2011)
Cui ZM, Hang LY, Song WG, Guo YG, Chem. Mater., 21, 1162 (2009)
Sun B, Chen ZX, Kim HS, Ahn H, Wang GX, J. Power Sources, 196(6), 3346 (2011)
Pasero D, Reeves N, West AR, J. Power Sources, 141(1), 156 (2005)
Jamnik J, Maier J, Phys. Chem. Chem. Phys., 5, 5215 (2003)
Au M, Adams T, J. Mater. Res., 25, 1649 (2010)
Li J, Dahn HM, Krause LJ, Le DB, Dahn JR, J. Electrochem. Soc., 15, 812 (2008)
Zhou G, Wang DW, Li F, Zhang L, Li N, Wu ZS, Wen L, Lu GQ, Cheng HM, Chem. Mater., 22, 5306 (2010)
Whittingham MS, MRS Bull., 33, 411 (2008)
Scrosati B, Garche J, J. Power Sources, 195(9), 2419 (2010)
Cabana J, Monconduit L, Larcher D, Palacin MR, Adv. Mater., 22, 170 (2010)
Tarascon JM, Phil. Trans. R. Soc., 368, 3227 (2010)
Chae C, Noh HJ, Lee JK, Scrosati B, Sun YK, Adv. Funct. Mater., DOI:10.1002/adfm.201303766. (2014)
Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM, Nature, 407, 496 (2000)
Kim SS, J. Korean Electrochem. Soc., 11, 211 (2008)
Zhang HJ, Tao HH, Jiang Y, Jiao Z, Wu MH, Zhao B, J. Power Sources, 195(9), 2950 (2010)
Cheng MY, Hwang BJ, J. Power Sources, 195(15), 4977 (2010)
Zhang WM, Wu XL, Hu JS, Guo YG, Wan LJ, Adv. Funct. Mater., 18(24), 3941 (2008)
Yoon T, Chae C, Sun YK, Zhao X, Kung HH, Lee JK, J. Mater. Chem., 21, 17325 (2011)
Wang HL, Cui LF, Yang YA, Casalongue HS, Robinson JT, Liang YY, Cui Y, Dai HJ, J. Am. Chem. Soc., 132(40), 13978 (2010)
Poizot P, Laruelle S, Grugeon S, Tarascon JM, J. Electrochem. Soc., 149, 1212 (2002)
Chae C, Kim JH, Kim JM, Sun YK, Lee JK, J. Mater. Chem., 22, 17870 (2012)
Yoon T, Kim J, Kim J, Lee JK, Energies, 6, 4830 (2013)
Chae C, Park H, Kim D, Kim J, Oh ES, Lee JK, J. Power Sources, 244, 214 (2013)
Ahn CW, Chung YH, Hahn BD, Park DS, Sung YE, Korean J. Chem. Eng., 29(8), 985 (2012)
Fang X, Lu X, Guo X, Mao Y, Hu YS, Wang J, Wang Z, Wu F, Liu H, Chen L, Electrochem. Commun., 12, 1520 (2010)
Zhong KF, Xia X, Zhang B, Li H, Wang ZX, Chen LQ, J. Power Sources, 195(10), 3300 (2010)
Zhong KF, Zhang B, Luo SH, Wen W, Li H, Huang XJ, Chen LQ, J. Power Sources, 196(16), 6802 (2011)
He Y, Huang L, Cai JS, Zheng XM, Sun SG, Electrochim. Acta, 55(3), 1140 (2010)
Lian PC, Zhu XF, Xiang HF, Li Z, Yang WS, Wang HH, Electrochim. Acta, 56(2), 834 (2010)
Kang M, Park ED, Kim JM, Yie JE, Appl. Catal. A: Gen., 327(2), 261 (2007)
Feng Q, Yanagisawa K, Yamasaki N, J. Porous Mater., 5, 153 (1998)
Ching S, Roark JL, Chem. Mater., 9, 750 (1997)
Malinger KA, Ding YS, Sithambaram S, Espinal L, Gomez S, Suib SL, J. Catal., 239(2), 290 (2006)
Gao J, Lowe MA, Abruna HD, Chem. Mater., 23, 3223 (2011)
Cui ZM, Hang LY, Song WG, Guo YG, Chem. Mater., 21, 1162 (2009)
Sun B, Chen ZX, Kim HS, Ahn H, Wang GX, J. Power Sources, 196(6), 3346 (2011)
Pasero D, Reeves N, West AR, J. Power Sources, 141(1), 156 (2005)
Jamnik J, Maier J, Phys. Chem. Chem. Phys., 5, 5215 (2003)
Au M, Adams T, J. Mater. Res., 25, 1649 (2010)
Li J, Dahn HM, Krause LJ, Le DB, Dahn JR, J. Electrochem. Soc., 15, 812 (2008)
Zhou G, Wang DW, Li F, Zhang L, Li N, Wu ZS, Wen L, Lu GQ, Cheng HM, Chem. Mater., 22, 5306 (2010)