Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received September 9, 2014
Accepted December 26, 2014
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Pretreatment of rice straw by hot-compressed water for enzymatic saccharification
Somkiat Ngamprasertsith1 2
Sasithorn Sunphorka2
Prapan Kuchonthara1 2
Prasert Reubroycharoen1 2
Ruengwit Sawangkeaw3†
1Fuels Research Center, Department of Chemical Technology, Faculty of Science, Chulalongkorn University, 254 Phayathai Rd., Pathumwan, Bangkok 10330, Thailand 2Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, 254 Phayathai Rd., Pathumwan, Bangkok 10330, Thailand 3The Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Institute Bldg. 3 254 Phayathai Rd., Pathumwan, Bangkok 10330, Thailand
rueangwit.s@chula.ac.th
Korean Journal of Chemical Engineering, October 2015, 32(10), 2007-2013(7), 10.1007/s11814-014-0389-4
Download PDF
Abstract
The primary objective of this work was to measure the maximum amount of glucose that can be produced from Thai rice straw using hot-compressed water (HCW)-pretreatment before enzymatic saccharification. The optimal HCW-pretreatment temperature and time were found to be 180 oC/2MPa for 20-30 min. However, the concentrations of the yeast inhibitors were strongly dependent on the HCW-pretreatment temperature and time. At temperatures over 180 oC/2MPa or for more than 30min at 180 oC/2MPa in the HCW-pretreatment the combined concentration of these two inhibitors (Furfural and 5-Hydroxymethylfurfural) increased exponentially, while the glucose levels were near the maximal asymptote. At the more optimal HCW-pretreatment condition of 180 oC/2MPa for 20 min, 25±3 kg of glucose could be produced from a 100 kg of rice straw, which is potentially economically competitive with other sources.
References
Wei GY, Lee YJ, Kim YJ, Jin IH, Lee JH, Chung CH, Lee JW, Appl. Biochem. Biotechnol., 162(5), 1471 (2010)
Han M, Kim Y, Kim Y, Chung B, Choi GW, Korean J. Chem. Eng., 28(1), 119 (2011)
Kargbo FR, Xing JJ, Zhang YL, Afr. J. Agric. Res., 4, 1560 (2009)
Wattanasiriwech S, Wattanasiriwech D, Svasti J, J. Non-Cryst. Solids, 356, 1228 (2010)
FitzPatrick M, Champagne P, Cunningham MF, Whitney RA, Bioresour. Technol., 101(23), 8915 (2010)
Taherzadeh MJ, Karimi K, Int. J. Mol. Sci., 9(9), 1621 (2008)
Binod P, Sindhu R, Singhania RR, Vikram S, Devi L, Nagalakshmi S, Kurien N, Sukumaran RK, Pandey A, Bioresour. Technol., 101(13), 4767 (2010)
Jurgens G, Survase S, Berezina O, Sklavounos E, Linnekoski J, Kurkijarvi A, Vakeva M, van Heiningen A, Granstrom T, Biotechnol. Lett., 34(8), 1415 (2012)
Boussarsar H, Roge B, Mathlouthi M, Bioresour. Technol., 100(24), 6537 (2009)
Sun Y, Cheng JY, Bioresour. Technol., 83(1), 1 (2002)
Yang B, Wyman CE, Biofuel. Bioprod. Bior., 2, 26 (2008)
Ravikumar R, Ranganathan BV, Chathoth KN, Gobikrishnan S, Korean J. Chem. Eng., 30(5), 1051 (2013)
Alvira P, Tomas-Pejo E, Ballesteros M, Negro MJ, Bioresour. Technol., 101, 4851 (2011)
Rabemanolontsoa H, Ayada S, Saka S, Biomass Bioenerg., 35(11), 4630 (2011)
Yu G, Yano S, Inoue H, Inoue S, Endo T, Sawayama S, Appl. Biochem. Biotechnol., 160(2), 539 (2010)
Fatehi P, Biotechnol. Prog., 29(2), 297 (2013)
Kalal HS, Mahani MK, Maragheh MG, Chaloosi M, J. Liq. Chromatogr. Relat. Technol., 30, 2081 (2007)
Palmqvist E, Hahn-Hagerdal B, Bioresour. Technol., 74(1), 25 (2000)
Bandura AV, Lvov SN, J. Phys. Chem. Ref Data, 35, 15 (2006)
Han M, Kim Y, Kim Y, Chung B, Choi GW, Korean J. Chem. Eng., 28(1), 119 (2011)
Kargbo FR, Xing JJ, Zhang YL, Afr. J. Agric. Res., 4, 1560 (2009)
Wattanasiriwech S, Wattanasiriwech D, Svasti J, J. Non-Cryst. Solids, 356, 1228 (2010)
FitzPatrick M, Champagne P, Cunningham MF, Whitney RA, Bioresour. Technol., 101(23), 8915 (2010)
Taherzadeh MJ, Karimi K, Int. J. Mol. Sci., 9(9), 1621 (2008)
Binod P, Sindhu R, Singhania RR, Vikram S, Devi L, Nagalakshmi S, Kurien N, Sukumaran RK, Pandey A, Bioresour. Technol., 101(13), 4767 (2010)
Jurgens G, Survase S, Berezina O, Sklavounos E, Linnekoski J, Kurkijarvi A, Vakeva M, van Heiningen A, Granstrom T, Biotechnol. Lett., 34(8), 1415 (2012)
Boussarsar H, Roge B, Mathlouthi M, Bioresour. Technol., 100(24), 6537 (2009)
Sun Y, Cheng JY, Bioresour. Technol., 83(1), 1 (2002)
Yang B, Wyman CE, Biofuel. Bioprod. Bior., 2, 26 (2008)
Ravikumar R, Ranganathan BV, Chathoth KN, Gobikrishnan S, Korean J. Chem. Eng., 30(5), 1051 (2013)
Alvira P, Tomas-Pejo E, Ballesteros M, Negro MJ, Bioresour. Technol., 101, 4851 (2011)
Rabemanolontsoa H, Ayada S, Saka S, Biomass Bioenerg., 35(11), 4630 (2011)
Yu G, Yano S, Inoue H, Inoue S, Endo T, Sawayama S, Appl. Biochem. Biotechnol., 160(2), 539 (2010)
Fatehi P, Biotechnol. Prog., 29(2), 297 (2013)
Kalal HS, Mahani MK, Maragheh MG, Chaloosi M, J. Liq. Chromatogr. Relat. Technol., 30, 2081 (2007)
Palmqvist E, Hahn-Hagerdal B, Bioresour. Technol., 74(1), 25 (2000)
Bandura AV, Lvov SN, J. Phys. Chem. Ref Data, 35, 15 (2006)