ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received November 11, 2014
Accepted January 13, 2015
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Cadmium removal from aqueous solution by brown seaweed, Sargassum angustifolium

Department of Environment, Persian Gulf Research Institute, Persian Gulf University, 75169, Bushehr, Iran
Korean Journal of Chemical Engineering, October 2015, 32(10), 2053-2066(14), 10.1007/s11814-015-0013-2
downloadDownload PDF

Abstract

Four kinds of indigenous seaweed were employed for assessing their soluble cadmium biosorption performance. Sargassum angustifolium revealed the greatest capacity in the range of equilibrium cadmium concentration lower than 0.5mmol l.1. It was further examined by optimization, equilibrium, kinetic and thermodynamic studies. It was found that1 g l.1 biosorbent at initial pH of 6 and 38 oC revealed the highest Cd2+ uptake. Kinetic studies revealed that the Cd2+ biosorption included a two-stage mechanism with an initial rapid stage during the first 30 min where ion exchange was the dominant mechanism. The process gradually reached equilibrium after 40-50 min of contact where the metal adsorption occurred too low due to the intraparticle diffusion. However, it was not the sole rate-limiting step. The pseudo-second order kinetic model, unlike the pseudo-first order, excellently described the experimental data in the whole range of contact time. The Langmuir isotherm model was more successful in describing the equilibrium data than the Freundlich and D-R models. Using this isotherm model, a relationship was proposed to predict the dose of biosorbent needed for removing specific initial cadmium concentration from aqueous solution or to meet a desire equilibrium cadmium concentration. The spontaneity and endothermicity as well as increasing randomness at the solid/solution interface during the biosorption were revealed by means of the thermodynamic studies.

References

Herrero R, Cordero B, Lodeiro P, Rey-Castro C, de Vicente MES, Mar. Chem., 99, 106 (2006)
Holan ZR, Volesky B, Prasetyo I, Biotechnol. Bioeng., 41, 819 (1993)
Aksu Z, Sep. Purif. Technol., 21(3), 285 (2001)
Day R, Denizli A, Arica MY, Bioresour. Technol., 76(1), 67 (2001)
Jafari SA, Cheraghi S, Mirbakhsh M, Mirza R, Maryamabadi A, Clean, 43, 118 (2015)
Sheng PX, Tan LH, Chen JP, Ting YP, J. Dispersion Sci. Technol., 25, 679 (2005)
Jafari SA, Cheraghi S, Int. Biodeterior. Biodegrad., 92, 12 (2014)
Vieira RHSF, Volesky B, Int. Microbiol., 3, 17 (2000)
Romero-Gonzalez ME, Williams CJ, Gardiner PH, Environ. Sci. Technol., 35, 3025 (2001)
Hashim MA, Chu KH, Chem. Eng. J., 97(2-3), 249 (2004)
Tsui MTK, Cheung KC, Tam NFY, Wong MH, Chemosphere, 65, 51 (2006)
Volesky B, Holan ZR, Biotechnol. Prog., 11(3), 235 (1995)
Wang J, Chen C, Biotechnol. Adv., 27, 195 (2009)
Fourest E, Volesky B, Environ. Sci. Technol., 30, 277 (1995)
Southichak B, Nakano K, Nomura M, Chiba N, Nishimura O, Water Sci. Technol., 58, 697 (2008)
Boyd GE, Schubert J, Adamson AW, J. Am. Chem. Soc., 69, 2818 (1947)
Kratochvil D, Volesky B, Trends Biotechnol., 16, 291 (1998)
Romera E, Gonzalez F, Ballester A, Blazquez ML, Munoz JA, Bioresour. Technol., 98(17), 3344 (2007)
Cruz CCV, da Costa ACA, Henriques CA, Luna AS, Bioresour. Technol., 91(3), 249 (2004)
Vimala R, Das N, J. Hazard. Mater., 168(1), 376 (2009)
Chatterjee A, Ray L, J. Sci. Ind. Res., 67, 629 (2008)
Lodeiro P, Barriada JL, Herrero R, de Vicente MES, Environ. Pollut., 142, 264 (2006)
Benguella B, Benaissa H, Water Res., 36, 2463 (2002)
Zan F, Huo S, Xi B, Zhao X, Front. Environ. Sci. Eng., 6, 51 (2012)
Matheickal JT, Yu Q, Woodburn GM, Water Res., 33, 335 (1999)
Leyva-Ramos R, Rangel-Mendez JR, Mendoza-Barron J, Fuentes-Rubio L, Guerrero-Coronado RM, Water Sci. Technol., 35, 205 (1997)
Park JK, Jin YB, Chang HN, Biotechnol. Bioeng., 63(1), 116 (1999)
Saeed A, Akhter MW, Iqbal M, Sep. Purif. Technol., 45(1), 25 (2005)
Ofomaja AE, Ho YS, J. Hazard. Mater., 139(2), 356 (2007)
Ofomaja AE, Bioresour. Technol., 101(15), 5868 (2010)
Ho YS, Bioresour. Technol., 96, 1292 (2005)
Liu Y, Colloids Surf. A: Physicochem. Eng. Asp., 274, 34 (2006)
Benhammou A, Yaacoubi A, Nibou L, Tanouti B, J. Colloid Interface Sci., 282(2), 320 (2005)
El-Kamash AM, Zaki AA, El Geleel MA, J. Hazard. Mater., 127(1-3), 211 (2005)
Mohan D, Singh KP, Water Res., 36, 2304 (2002)
Gosset T, Trancart JL, Thevenot DR, Water Res., 20, 21 (1986)
Milonjic SK, J. Serb. Chem. Soc., 72, 1363 (2007)
Liu Y, J. Chem. Eng. Data, 54(7), 1981 (2009)
Gialamouidis D, Mitrakas M, Liakopoulou-Kyriakides M, J. Hazard. Mater., 182(1-3), 672 (2010)
Sari A, Tuzen M, J. Hazard. Mater., 152(1), 302 (2008)
Ho YS, McKay G, Process Biochem., 34(5), 451 (1999)
Sinha A, Pant KK, Khare SK, Int. Biodeterior. Biodegrad., 71, 1 (2012)
EI-Sikaily A, El Nemr A, Khaled A, Abdelwehab O, J. Hazard. Mater., 148(1-2), 216 (2007)
McKay G, Otterburn MS, Aga JA, Water Air Soil Pollut., 36, 381 (1987)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로