Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received November 7, 2014
Accepted January 27, 2015
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Nickel ion removal using nanoporous poly(styrene-co divinyl benzene) copolymer
Chemical Engineering, Babol University of Technology, Babol, Iran 1Faculty of Chemical Engineering, Babol University of Technology, P. O. Box 484, Babol, Iran
m.ghorbani@nit.ac.ir
Korean Journal of Chemical Engineering, October 2015, 32(10), 2153-2160(8), 10.1007/s11814-015-0026-x
Download PDF
Abstract
To achieve a suitable porous structure and high mechanical strength that is extremely valuable properties in adsorbent polymeric particles, poly(styrene-co-divinylbenzene) with high amounts of cross-linker and diverse proportions of diluent agent (porogen) were synthesized according to the methodology of the suspension polymerization technique. The structural characteristics of the particles and their adsorption properties for adsorption of Nickel ions were studied. Effect of solvent type and monomeric fraction on particles morphology and porosity was discussed. The solvents including n-heptane (HEP) and acetonitrile and monomer fraction was 50% and 30% of divinylbenzene (DVB). From the results obtained, we decided to apply an adsorbent with high mechanical strength and a porous structure appropriate for absorbing the Ni(II). The copolymer was characterized by Fourier transform infrared (FT-IR) analysis. We used scanning electron microscopy (SEM) and transmission electron microscopy (TEM) tests to study the morphology and particle size of the nanoparticles. According to the results, the copolymers synthesized with n-heptane have more porosity. Also an increase in the percentage of DVB caused finer pores. After synthesis of copolymer the applicability of these polymer beads to separation and concentration of Ni(II) is discussed. In separation of Ni(II) from aqueous solution, the effects of pH, temperature and time are discussed and thermodynamic and kinetic calculations are done and its isotherm are fitted with various equations.
References
Urban D, Takamura K (eds.), Polymer dispersions and their industrial applications, Wiley-VCH, Weinheim (2002).
Fudouzi H, Xia YN, Adv. Mater., 15(11), 892 (2003)
Ugelstad J, Stenstad P, Kilaas L, Prestvik WS, Rian A, Nustad K, Herje R, Berge A, Macromol. Symp., 101, 491 (1996)
Moore JC, J. Polym. Sci. A: Polym. Chem., 2, 835 (1964)
Park JG, Kim JW, Oh SG, Suh KD, J. Appl. Polym. Sci., 87(3), 420 (2003)
Likozar B, Krajnc M, J. Appl. Polym. Sci., 110(1), 183 (2008)
Kaang S, Jin W, Kader MA, Nah C, Polym. -Plast. Technol. Eng., 43, 1517 (2004)
Lu Y, Liu L, Tian M, Geng H, Zhang L, Eur. Polym. J., 41, 589 (2005)
Samui AB, Dalvi VG, Chandrasekhar L, Patri M, Chakraborty BC, J. Appl. Polym. Sci., 99(5), 2542 (2006)
Lu Y, Liu L, Yang C, Eur. Polym. J., 41, 577 (2005)
Garcia-Diego C, Cuellar J, Ind. Eng. Chem. Res., 44(22), 8237 (2005)
Garcia-Diego C, Cuellar J, Ind. Eng. Chem. Res., 45(10), 3624 (2006)
Cantarero LA, Butler JE, Osborne JW, Anal. Biochem., 105, 375 (1980)
Lloyd LL, J. Chromatogr., 544, 201 (1991)
Okay O, Prog. Polym. Sci, 25, 711 (2000)
Yuan HG, Kalfas G, Ray WH, J. Macromol. Sci.-Phys., C-31, 215 (1991)
Vivaldolima E, Wood PE, Hamielec AE, Penlidis A, Ind. Eng. Chem. Res., 36(4), 939 (1997)
Hamielec AE, Tobita H, Polymerization Process-In Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, Germany (2002).
Lovell PA, El-Aasser MS, Emulsion polymerization and emulsion polymers, Wiley, New York (1999).
Napper DH Polymeric stabilization of colloidal dispersions, Academic, London (1983).
Abrams IM, Millar JR, React. Funct. Polym., 35(1), 7 (1997)
Gazda DB, Fritz JS, Porter MD, Anal. Chim. Acta, 508, 53 (2004)
Allmer K, Hult A, Raanby B, J. Polym. Sci. A: Polym. Chem., 27, 3405 (1989)
Landoll LM, Breslow DS, J. Polym. Sci. A: Polym. Chem., 27, 2189 (1989)
Hasar H, J. Hazard. Mater., 97(1-3), 49 (2003)
Panneerselvam P, SathyaSelvaBala V, Thinakaran N, Baskaralingam P, Palanichamy M, Sivanesan S, E-J. Chem., 6, 729 (2009)
Yang XY, Al-Duri B, J. Colloid Interface Sci., 287(1), 25 (2005)
You LJ, Wu ZJ, Kim T, Lee K, J. Colloid Interface Sci., 300(2), 526 (2006)
Yoon JH, Baek JI, Yamamoto Y, Komai T, Kawamura T, Chem. Eng. Sci., 58(23-24), 5229 (2003)
Paul S, Ghoshal AK, Mandal B, Chem. Eng. Sci., 64(2), 313 (2009)
He BL, Huang WQ, Ion exchange and adsorption resin, Shanghai Science and Education Press, Shanghai (1995).
Huang JH, Wang G, Huang KL, Chem. Eng. J., 168(2), 715 (2011)
Fudouzi H, Xia YN, Adv. Mater., 15(11), 892 (2003)
Ugelstad J, Stenstad P, Kilaas L, Prestvik WS, Rian A, Nustad K, Herje R, Berge A, Macromol. Symp., 101, 491 (1996)
Moore JC, J. Polym. Sci. A: Polym. Chem., 2, 835 (1964)
Park JG, Kim JW, Oh SG, Suh KD, J. Appl. Polym. Sci., 87(3), 420 (2003)
Likozar B, Krajnc M, J. Appl. Polym. Sci., 110(1), 183 (2008)
Kaang S, Jin W, Kader MA, Nah C, Polym. -Plast. Technol. Eng., 43, 1517 (2004)
Lu Y, Liu L, Tian M, Geng H, Zhang L, Eur. Polym. J., 41, 589 (2005)
Samui AB, Dalvi VG, Chandrasekhar L, Patri M, Chakraborty BC, J. Appl. Polym. Sci., 99(5), 2542 (2006)
Lu Y, Liu L, Yang C, Eur. Polym. J., 41, 577 (2005)
Garcia-Diego C, Cuellar J, Ind. Eng. Chem. Res., 44(22), 8237 (2005)
Garcia-Diego C, Cuellar J, Ind. Eng. Chem. Res., 45(10), 3624 (2006)
Cantarero LA, Butler JE, Osborne JW, Anal. Biochem., 105, 375 (1980)
Lloyd LL, J. Chromatogr., 544, 201 (1991)
Okay O, Prog. Polym. Sci, 25, 711 (2000)
Yuan HG, Kalfas G, Ray WH, J. Macromol. Sci.-Phys., C-31, 215 (1991)
Vivaldolima E, Wood PE, Hamielec AE, Penlidis A, Ind. Eng. Chem. Res., 36(4), 939 (1997)
Hamielec AE, Tobita H, Polymerization Process-In Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, Germany (2002).
Lovell PA, El-Aasser MS, Emulsion polymerization and emulsion polymers, Wiley, New York (1999).
Napper DH Polymeric stabilization of colloidal dispersions, Academic, London (1983).
Abrams IM, Millar JR, React. Funct. Polym., 35(1), 7 (1997)
Gazda DB, Fritz JS, Porter MD, Anal. Chim. Acta, 508, 53 (2004)
Allmer K, Hult A, Raanby B, J. Polym. Sci. A: Polym. Chem., 27, 3405 (1989)
Landoll LM, Breslow DS, J. Polym. Sci. A: Polym. Chem., 27, 2189 (1989)
Hasar H, J. Hazard. Mater., 97(1-3), 49 (2003)
Panneerselvam P, SathyaSelvaBala V, Thinakaran N, Baskaralingam P, Palanichamy M, Sivanesan S, E-J. Chem., 6, 729 (2009)
Yang XY, Al-Duri B, J. Colloid Interface Sci., 287(1), 25 (2005)
You LJ, Wu ZJ, Kim T, Lee K, J. Colloid Interface Sci., 300(2), 526 (2006)
Yoon JH, Baek JI, Yamamoto Y, Komai T, Kawamura T, Chem. Eng. Sci., 58(23-24), 5229 (2003)
Paul S, Ghoshal AK, Mandal B, Chem. Eng. Sci., 64(2), 313 (2009)
He BL, Huang WQ, Ion exchange and adsorption resin, Shanghai Science and Education Press, Shanghai (1995).
Huang JH, Wang G, Huang KL, Chem. Eng. J., 168(2), 715 (2011)