ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received October 19, 2014
Accepted April 1, 2015
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Propane combustion over Pt/Al2O3 catalysts with different crystalline structures of alumina

Department of Chemical Engineering and Department of Energy Systems Research, Ajou University, 206, Worldcup-ro, Yeongtong-gu, Suwon 443-749, Korea
edpark@ajou.ac.kr
Korean Journal of Chemical Engineering, November 2015, 32(11), 2212-2219(8), 10.1007/s11814-015-0062-6
downloadDownload PDF

Abstract

The effects of the crystalline phases (α-Al2O3, κ-Al2O3, δ-Al2O3, θ-Al2O3, η-Al2O3, and γ-Al2O3) of the alumina support of Pt/Al2O3 catalysts on the catalyst activity toward propane combustion were examined. The catalysts were characterized by N2 physisorption, CO chemisorption, temperature-programmed reduction (TPR), temperatureprogrammed oxidation (TPO), transmission electron microscopy (TEM), and infrared spectroscopy (IR) after CO chemisorption. The Pt dispersion of the catalysts (surface Pt atoms/total Pt atoms), measured via CO chemisorption, was more dependent on the crystalline structure of alumina than on the surface area of alumina. The highest catalytic activity for propane combustion was achieved with Pt/α-Al2O3, which has the lowest Brunauer, Emmett, and Teller (BET) surface area and Pt dispersion. The lowest catalytic activity for propane combustion was exhibited by Pt/γ-Al2O3, which has the highest BET surface area and Pt dispersion. The catalytic activity was confirmed to increase with increasing Pt particle size in Pt/δ-Al2O3. The apparent activation energies for propane combustion over Pt/α-Al2O3, Pt/κ-Al2O3, Pt/δ-Al2O3, Pt/θ-Al2O3, Pt/η-Al2O3, and Pt/γ-Al2O3 were determined to be 24.7, 21.4, 24.3, 22.1, 24.0, and 19.1 kcal/mol, respectively.

References

Choudhary TV, Banerjee S, Choudhary VR, Appl. Catal. A: Gen., 234(1-2), 1 (2002)
Yao YFY, Ind. Eng. Chem. Process Des. Dev., 19, 293 (1980)
Kim KB, Kim MK, Kim YH, Song KS, Park ED, Res. Chem. Intermed., 36, 603 (2010)
Okal J, Zawadzki M, Appl. Catal. B: Environ., 105(1-2), 182 (2011)
Kiwi-Minsker L, Yuranov I, Slavinskaia E, Zaikovskii V, Renken A, Catal. Today, 59(1-2), 61 (2000)
Men Y, Kolb G, Zapf R, Pennemann H, Hessel V, Chem. Eng. Res. Des., 87(1A), 91 (2009)
Yazawa Y, Takagi N, Yoshida H, Komai S, Satsuma A, Tanaka T, Yoshida S, Hattori T, Appl. Catal. A: Gen., 233(1-2), 103 (2002)
Yazawa Y, Yoshida H, Hattori T, Appl. Catal. A: Gen., 237(1-2), 139 (2002)
Park JE, Kim KB, Seo KW, Song KS, Park ED, Res. Chem. Intermed., 37, 1135 (2011)
Avila MS, Vignatti CI, Apesteguia CR, Garetto TF, Chem. Eng. J., 241, 52 (2014)
Hubbard CP, Otto K, Gandhi HS, Ng KY, J. Catal., 144(2), 484 (1993)
Burch R, Halpin E, Hayes M, Ruth K, Sullivan JA, Appl. Catal. B: Environ., 19(3-4), 199 (1998)
Garetto TF, Rincon E, Apesteguia CR, Appl. Catal. B: Environ., 48(3), 167 (2004)
Garetto TF, Rincon E, Apesteguia CR, Appl. Catal. B: Environ., 73(1-2), 65 (2007)
Kim KB, Kim YH, Song KS, Park ED, Rev. Adv. Mater. Sci., 28, 35 (2011)
Park JE, Kim KB, Kim YA, Song KS, Park ED, Catal. Lett., 143(11), 1132 (2013)
Yoshida H, Yazawa Y, Hattori T, Catal. Today, 87(1-4), 19 (2003)
Yazawa Y, Yoshida H, Komai S, Hattori T, Appl. Catal. A: Gen., 233(1-2), 113 (2002)
Avila MS, Vignatti CI, Apesteguia CR, Rao VV, Chary K, Garetto TF, Catal. Lett., 134(1-2), 118 (2010)
Kim MY, Park SM, Seo G, Song KS, Catal. Lett., 137, 205 (2010)
Tiernan MJ, Finlayson OE, Appl. Catal. B: Environ., 19(1), 23 (1998)
Zhu Z, Lu G, Guo Y, Guo Y, Zhang Z, Wang Y, Gong ZQ, ChemCatChem, 5, 2495 (2013)
Xiaodong W, Li Z, Duan W, Shuang L, Zhichun S, Jun F, J. Hazard. Mater., 225-226, 146 (2012)
Kim YH, Park ED, Appl. Catal. B: Environ., 96(1-2), 41 (2010)
Rane S, Borg O, Yang J, Rytter E, Holmen A, Appl. Catal. A: Gen., 388(1-2), 160 (2010)
Burch R, Loader PK, Appl. Catal. B: Environ., 5(1-2), 149 (1994)
Bergeret G, Gallezot P, in Handbook of Heterogeneous Catalysis, Ertl G, Knozinger H, Schuth F, Weitkamp J, Eds., Wiley-VCH, Weinheim (2008).
Hwang CP, Yeh CT, J. Mol. Catal. A-Chem., 112, 295 (1996)
Thomas S, Rivallan M, Lepage M, Takagi N, Hirata H, Thibault-Starzyk F, Microporous Mesoporous Mater., 140, 103 (2011)
Anderson JA, Chong FK, Rochester CH, J. Mol. Catal. A-Chem., 140, 65 (1999)
Liu D, Que GH, Wang ZX, Yan ZF, Catal. Today, 68(1-3), 155 (2001)
Beck IE, Bukhtiyarov VI, Pakharukov IY, Zaikovsky VI, Kriventsov VV, Parmon VN, J. Catal., 268(1), 60 (2009)
Hicks RF, Qi H, Young ML, Lee RG, J. Catal., 122, 280 (1990)
Weaver JF, Kan HH, Shumbera RB, J. Phys. Condens. Matter, 20, 184015 (2008)
Gracia FJ, Bollmann L, Wolf EE, Miller JT, Kropf AJ, J. Catal., 220(2), 382 (2003)
Otto K, Andino JW, Parks CL, J. Catal., 131, 243 (1991)
Park JE, Park ED, Korean J. Chem. Eng., 31(11), 1985 (2014)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로