ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received December 13, 2014
Accepted April 23, 2015
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Prediction of the rejection of organic compounds (neutral and ionic) by nanofiltration and reverse osmosis membranes using neural networks

Laboratory of Biomaterials and Transport Phenomena (LBMPT), University of Medea, Algeria
Korean Journal of Chemical Engineering, November 2015, 32(11), 2300-2310(11), 10.1007/s11814-015-0086-y
downloadDownload PDF

Abstract

This work investigates the use of neural networks in modeling the rejection processes of organic compounds (neutral and ionic) by nanofiltration and reverse osmosis membranes. Three feed-forward neural network (NN) models, characterized by a similar structure (eleven neurons for NN1 and NN2 and twelve neurons for NN3 in the input layer, one hidden layer and one neuron in the output layer), are constructed with the aim of predicting the rejection of organic compounds (neutral and ionic). A set of 956 data points for NN1 and 701 data points for NN2 and NN3 were used to test the neural networks. 80%, 10%, and 10% of the total data were used, respectively, for the training, the validation, and the test of the three models. For the most promising neural network models, the predicted rejection values of the test dataset were compared to measured rejections values; good correlations were found (R=0.9128 for NN1, R=0.9419 for NN2, and R=0.9527 for NN3). The root mean squared errors for the total dataset were 11.2430% for NN1, 9.0742% for NN2, and 8.2047% for NN3. Furthermore, the comparison between the predicted results and QSAR models shows that the neural network models gave far better.

References

Kiso Y, Sugiura Y, Kitao T, Nishimura K, J. Membr. Sci., 192(1-2), 1 (2001)
Schafer AI, Nghiem LD, Waite TD, Environ. Sci. Technol., 37, 182 (2003)
Kimura K, Amy G, Drewes JE, Heberer T, Kim TU, Watanabe Y, J. Membr. Sci., 227(1-2), 113 (2003)
Kimura K, Toshima S, Amy G, Watanabe Y, J. Membr. Sci., 245(1-2), 71 (2004)
Nghiem LD, Schafer AI, Elimelech M, Environ. Sci. Technol., 38, 1888 (2004)
Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT, Environ. Sci. Technol., 36, 1202 (2002)
Heberer T, Toxicol. Lett., 131, 5 (2002)
Castiglioni S, Bagnati R, Fanelli R, Pomati F, Calamari D, Zuccato E, Environ. Sci. Technol., 40, 357 (2006)
Webb S, Ternes T, Gibert M, Olejniczak K, Toxicol. Lett., 142, 157 (2003)
Vosges M, Braguer JC, Combarnous Y, Reprod. Toxicol., 25, 161 (2008)
Nghiem LD, Schafer AI, Elimelech M, J. Membr. Sci., 286(1-2), 52 (2006)
Verliefde AR, Heijman SG, Cornelissen ER, Amy G, Van der Bruggen B, van Dijk JC, Water Res., 41, 3227 (2007)
Verliefde ARD, Cornelissen ER, Heijman SGJ, Verberk JQJC, Amy GL, Van der Bruggen B, van Dijk JC, J. Membr. Sci., 322(1), 52 (2008)
Bellona C, Drewes JE, Xu P, Amy G, Water Res., 38, 2795 (2004)
Heijman SGJ, Verliefde ARD, Cornelissen ER, Amy G, Van Dijk JC, Water Sci. Technol., 7, 17 (2007)
Gur-Reznik S, Koren-Menashe I, Heller-Grossman L, Rufel O, Dosoretz CG, Desalination, 277(1-3), 250 (2011)
Yoon Y, Westerhoff P, Snyder SA, Wert EC, J. Membr. Sci., 270(1-2), 88 (2006)
Bellona C, Drewes JE, J. Membr. Sci., 249(1-2), 227 (2005)
Yangali-Quintanilla V, Verliefde A, Kim TU, Sadmani A, Kennedy M, Amy G, J. Membr. Sci., 342(1-2), 251 (2009)
Basheer IA, Hajmeer M, J. Microbiol. Methods, 43, 3 (2000)
Si-Moussa C, Hanini S, Derriche R, Bouhedda M, Bouzidi A, Br. J. Chem. Eng., 25, 183 (2008)
Bryjak J, Ciesielski K, Zbicinski I, J. Biotechnol., 114, 177 (2004)
Libotean D, Giralt J, Rallo R, Cohen Y, Giralt F, Ridgway HF, Rodriguez G, Phipps D, J. Membr. Sci., 313(1-2), 23 (2008)
Yangali-Quintanilla V, Sadmani A, McConville M, Kennedy M, Amy G, Water Res., 44, 373 (2010)
Shahmansouri A, Bellona C, Sep. Purif. Technol., 118, 627 (2013)
Lee DS, Park JM, J. Biotechnol., 75, 229 (1999)
Silva RG, Cruz AJG, Hokka CO, Giordano RLC, Giordano RC, Br. J. Chem. Eng., 17, 587 (2000)
Van der Bruggen B, Schaep J, Wilms D, Vandecasteele C, J. Membr. Sci., 156(1), 29 (1999)
Ozaki H, Li H, Water Res., 36, 123 (2002)
Xu P, Drewes JE, Bellona C, Amy G, Kim TU, Adam M, Heberer T, Water Environ. Res., 77, 40 (2005)
Yoon Y, Lueptow RM, J. Membr. Sci., 261(1-2), 76 (2005)
Kim TU, Drewes JE, Summers RS, Amy GL, Water Res., 41, 3977 (2007)
Verliefde ARD, Cornelissen ER, Heijman SGJ, Petrinic I, Luxbacher T, Amy GL, Van der Bruggen B, van Dijk JC, J. Membr. Sci., 330(1-2), 90 (2009)
Verliefde ARD, Cornelissen ER, Heijman SGJ, Verberk JQJC, Amy GL, Van der Bruggen B, van Dijk JC, J. Membr. Sci., 339(1-2), 10 (2009)
Comerton AM, Andrews RC, Bagley DM, Hao CY, J. Membr. Sci., 313(1-2), 323 (2008)
Comerton AM, Andrews RC, Bagley DM, Water Res., 43, 613 (2009)
Yangali-Quintanilla V, Kennedy M, Amy G, Kim TU, Drinking Water Eng. Sci., 1, 7 (2008)
Yangali-Quintanilla V, Sadmani A, McConville M, Kennedy M, Amy G, Water Res., 43, 2349 (2009)
Quintanilla VAY, Rejection of emerging organic contaminants by nanofiltration and reverse osmosis membranes effects of fouling, modelling and water reuse, Delft University of Technology, Netherlands (2010).
Huang HO, Cho H, Schwab K, Jacangelo JG, Desalination, 281, 446 (2011)
Plakas KV, Karabelas AJ, Sep. Purif. Technol., 80(2), 246 (2011)
Linares RV, Yangali-Quintanilla V, Li Z, Amy G, Water Res., 45, 6737 (2011)
Dolar D, Zokic TI, Kosutic K, Asperger D, Pavlovic DM, Environ. Sci. Pollut. Res., 19, 1033 (2012)
Dolar D, Kosutic K, Perisa M, Babic S, Sep. Purif. Technol., 115, 1 (2013)
Sadmani AHMA, Andrews RC, Bagley DM, J. Membr. Sci., 450, 272 (2014)
Sadmani AHMA, Andrews RC, Bagley DM, Sep. Purif. Technol., 122, 462 (2014)
Santos JLC, de Beukelaar P, Vankelecom IFJ, Velizarov S, Crespo JG, Sep. Purif. Technol., 50(1), 122 (2006)
Liu H, Kang O, Kim M, Oh T, Lee S, Kim J, Yoo C, Korean J. Chem. Eng., 22, 94 (2013)
Kolluri SS, Esfahani IJ, Garikiparthy PSN, Yoo CK, Korean J. Chem. Eng., 32(8), 1486 (2015)
Ahmed F, Cho HJ, Kim JK, Seong NU, Yeo YK, Korean J. Chem. Eng., 32(6), 1029 (2015)
Hemmati-Sarapardeh A, Majidi SMJ, Mahmoudi B, Ahmad Ramazani SA, Mohammadi AH, Korean J. Chem. Eng., 31(7), 1253 (2014)
Khaouane L, Etude et modelisation de la biosynthese des antibiotiques a partir de differentes souches productrices - cas de pleuromutiline, PhD thesis, Universite de Medea, Algeria (2013).
Garson GD, AI Expert, 6, 46 (1991)
Goh A, Artificial Intelligence in Engineering, 9, 143 (1995)
Gevrey M, Dimopoulos I, Lek S, Ecol. Model., 160, 249 (2003)
Shokir EMEM, Al-Homadhi ES, Al-Mahdy O, El-Midany AAH, Korean J. Chem. Eng., 31(8), 1496 (2014)
Adib H, Hassanajili S, Sheikhi-Kouhsar MR, Salahi A, Mohammadi T, Korean J. Chem. Eng., 32(1), 159 (2015)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로