Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received September 12, 2014
Accepted April 7, 2015
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Novel perpendicularly cross-rectangular CuO architectures: Controlled synthesis, enhanced photocatalytic activity and catalytic thermal-decomposition of NH4ClO4
1Key Laboratory of Functional molecule Design and Interface Process, Anhui University of Architecture, Hefei 230601, China 2School of Materials and Chemical Engineering, Anhui University of Architecture, Hefei 230601, China 3, China 4Department of Chemical and Materials Engineering, Hefei University, Hefei 230601, China
hmhu@ustc.edu
Korean Journal of Chemical Engineering, November 2015, 32(11), 2335-2341(7), 10.1007/s11814-015-0070-6
Download PDF
Abstract
Novel perpendicularly cross-rectangular CuO architectures have been successfully fabricated on a large scale by a facile microwave-assisted chemical aqueous route. The as-synthesized CuO products were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), high resolution transmission electron microscopy (HRTEM) and UV-vis absorption spectroscopy. An individual CuO microstructure is mainly assembled by two rectangle-shaped nanosheets with different sizes, which is perpendicularly intersected through the center. A possible formation mechanism of perpendicularly cross-rectangular CuO architectures was proposed based on the comparative experimental results. The prepared CuO nanoarchitectures exhibited excellent photocatalytic activity for the decolorization of Rhodamine B (RhB) under visible light irradiation. Simultaneously, the prepared CuO products, acting as an additive, also showed effective catalytic activity on the thermal decomposition of ammonium perchlorate (NH4ClO4).
References
Yan HQ, He RR, Pham J, Yang PD, Adv. Mater., 15(5), 402 (2003)
Yuan CZ, Zhang XG, Su LH, Shen LF, J. Mater. Chem., 19, 5772 (2009)
Jiang H, Zhao T, Yan CY, Ma J, Li CZ, Nanoscale, 2, 2195 (2010)
Hu XL, Yu JC, Gong JM, Li Q, Li GS, Adv. Mater., 19(17), 2324 (2007)
Lou XW, Deng D, Lee JY, Archer LA, J. Mater. Chem., 18, 4397 (2008)
Wang X, Hu CG, Liu H, Du GJ, He XS, Xi Y, Sens. Actuators B-Chem., 144, 220 (2010)
Pillai UR, Deevi S, Appl. Catal. B: Environ., 64(1-2), 146 (2006)
Kumar RV, Diamant Y, Gedanken A, Chem. Mater., 12, 2301 (2000)
Schon JH, Dorget M, Beuran FC, Zu XZ, Arushanov E, Cavellin CD, Lagues M, Nature, 414, 434 (2001)
Gao XP, Bao JL, Pan GL, Zhu HY, Huang PX, Wu F, Song DY, J. Phys. Chem. B, 108(18), 5547 (2004)
Zhu YW, Yu T, Cheong FC, Xu XJ, Lim CT, Tan VBC, Thong JTL, Sow CH, Nanotechnology, 16, 88 (2005)
Bakhtiari F, Darezereshki E, Mater. Lett., 65, 171 (2011)
Sonia S, Jayram ND, Kumar PS, Mangalaraj D, Ponpandian N, Viswanathan C, Superlattices Microstruct., 66, 1 (2014)
Wang WZ, Zhuang Y, Li L, Mater. Lett., 62, 1724 (2008)
Zhang XJ, Wang GF, Liu XM, Wu HQ, Mater. Chem. Phys., 112(3), 726 (2008)
Wang XQ, Xi GC, Xiong SL, Liu YK, Xi BJ, Yu WC, Qian YT, J. Cryst. Growth, 7, 930 (2007)
Deng CH, Hu HM, Ge XQ, Han CL, Yang BH, J. Nanosci. Nanotechnol., 12, 3150 (2012)
Kim MR, Kim SJ, Jang DJ, J. Cryst. Growth, 10, 257 (2010)
Krishnan S, Haseeb ASMA, Johan MR, J. Nanopart. Res., 15, 1410 (2013)
Hu YY, Huang XT, Wang K, Liu JP, Jiang J, Ding RM, Ji XX, Li X, J. Solid State Chem., 183, 662 (2010)
Zou GF, Li H, Zhang DW, Xiong K, Dong C, Qian YT, J. Phys. Chem. B, 110(4), 1632 (2006)
Yu YL, Zhang JY, Mater. Lett., 63, 1840 (2009)
Chen G, Zhou HF, Ma W, Zhang D, Qiu GZ, Liu XH, Solid State Sci., 13, 2137 (2011)
Li JY, Xiong SL, Xi BJ, Li XG, Qian YT, J. Cryst. Growth, 9, 4108 (2009)
Zhang WX, Li M, Wang Q, Chen GD, Kong M, Yang ZH, Mann S, Adv. Funct. Mater., 21(18), 3516 (2011)
Shi HX, Zhao YX, Li N, Wang K, Hua X, Chen MD, Teng F, Catal. Commun., 47, 7 (2014)
Ai ZH, Ho WK, Lee SC, Zhang LZ, Environ. Sci. Technol., 43, 4143 (2009)
Deng CH, Tian XB, Mater. Res. Bull., 48, 4344 (2009)
Zaman S, Zainelabdin A, Amin G, Nur O, Willander M, J. Phys. Chem. Solids, 73, 1320 (2012)
Jacobs PWM, Whitehead HM, Chem. Rev., 69, 551 (1969)
Xu YY, Chen DR, Jiao ML, Xue KY, Mater. Res. Bull., 42(9), 1723 (2007)
Patil PR, Krishnamurthy VN, Joshi SS, PROPELLANT-EXPLOS-PYROTECH, 33(4), 266 (2008)
Yang SY, Wang CF, Chen L, Chen S, Mater. Chem. Phys., 120(2-3), 296 (2010)
Chen LJ, Li LP, Li GS, J. Alloy. Compd., 464, 532 (2008)
Yang C, Xiao F, Wang JD, Su XT, J. Colloid Interface Sci., 435, 34 (2014)
Alizadeh-Gheshlaghi E, Shaabani B, Khodayari A, Azizian-Kalandaragh Y, Rahimi R, Powder Technol., 217, 330 (2012)
Yang C, Wang JD, Xiao F, Su XT, Powder Technol., 264, 36 (2014)
Boldyrev VV, Thermochim. Acta, 443(1), 1 (2006)
Yin JZ, Sheng ZH, Zhang WG, Zhang Y, Zhong H, Li RQ, Jiang ZJ, Wang XF, Mater. Lett., 131, 317 (2014)
Yuan CZ, Zhang XG, Su LH, Shen LF, J. Mater. Chem., 19, 5772 (2009)
Jiang H, Zhao T, Yan CY, Ma J, Li CZ, Nanoscale, 2, 2195 (2010)
Hu XL, Yu JC, Gong JM, Li Q, Li GS, Adv. Mater., 19(17), 2324 (2007)
Lou XW, Deng D, Lee JY, Archer LA, J. Mater. Chem., 18, 4397 (2008)
Wang X, Hu CG, Liu H, Du GJ, He XS, Xi Y, Sens. Actuators B-Chem., 144, 220 (2010)
Pillai UR, Deevi S, Appl. Catal. B: Environ., 64(1-2), 146 (2006)
Kumar RV, Diamant Y, Gedanken A, Chem. Mater., 12, 2301 (2000)
Schon JH, Dorget M, Beuran FC, Zu XZ, Arushanov E, Cavellin CD, Lagues M, Nature, 414, 434 (2001)
Gao XP, Bao JL, Pan GL, Zhu HY, Huang PX, Wu F, Song DY, J. Phys. Chem. B, 108(18), 5547 (2004)
Zhu YW, Yu T, Cheong FC, Xu XJ, Lim CT, Tan VBC, Thong JTL, Sow CH, Nanotechnology, 16, 88 (2005)
Bakhtiari F, Darezereshki E, Mater. Lett., 65, 171 (2011)
Sonia S, Jayram ND, Kumar PS, Mangalaraj D, Ponpandian N, Viswanathan C, Superlattices Microstruct., 66, 1 (2014)
Wang WZ, Zhuang Y, Li L, Mater. Lett., 62, 1724 (2008)
Zhang XJ, Wang GF, Liu XM, Wu HQ, Mater. Chem. Phys., 112(3), 726 (2008)
Wang XQ, Xi GC, Xiong SL, Liu YK, Xi BJ, Yu WC, Qian YT, J. Cryst. Growth, 7, 930 (2007)
Deng CH, Hu HM, Ge XQ, Han CL, Yang BH, J. Nanosci. Nanotechnol., 12, 3150 (2012)
Kim MR, Kim SJ, Jang DJ, J. Cryst. Growth, 10, 257 (2010)
Krishnan S, Haseeb ASMA, Johan MR, J. Nanopart. Res., 15, 1410 (2013)
Hu YY, Huang XT, Wang K, Liu JP, Jiang J, Ding RM, Ji XX, Li X, J. Solid State Chem., 183, 662 (2010)
Zou GF, Li H, Zhang DW, Xiong K, Dong C, Qian YT, J. Phys. Chem. B, 110(4), 1632 (2006)
Yu YL, Zhang JY, Mater. Lett., 63, 1840 (2009)
Chen G, Zhou HF, Ma W, Zhang D, Qiu GZ, Liu XH, Solid State Sci., 13, 2137 (2011)
Li JY, Xiong SL, Xi BJ, Li XG, Qian YT, J. Cryst. Growth, 9, 4108 (2009)
Zhang WX, Li M, Wang Q, Chen GD, Kong M, Yang ZH, Mann S, Adv. Funct. Mater., 21(18), 3516 (2011)
Shi HX, Zhao YX, Li N, Wang K, Hua X, Chen MD, Teng F, Catal. Commun., 47, 7 (2014)
Ai ZH, Ho WK, Lee SC, Zhang LZ, Environ. Sci. Technol., 43, 4143 (2009)
Deng CH, Tian XB, Mater. Res. Bull., 48, 4344 (2009)
Zaman S, Zainelabdin A, Amin G, Nur O, Willander M, J. Phys. Chem. Solids, 73, 1320 (2012)
Jacobs PWM, Whitehead HM, Chem. Rev., 69, 551 (1969)
Xu YY, Chen DR, Jiao ML, Xue KY, Mater. Res. Bull., 42(9), 1723 (2007)
Patil PR, Krishnamurthy VN, Joshi SS, PROPELLANT-EXPLOS-PYROTECH, 33(4), 266 (2008)
Yang SY, Wang CF, Chen L, Chen S, Mater. Chem. Phys., 120(2-3), 296 (2010)
Chen LJ, Li LP, Li GS, J. Alloy. Compd., 464, 532 (2008)
Yang C, Xiao F, Wang JD, Su XT, J. Colloid Interface Sci., 435, 34 (2014)
Alizadeh-Gheshlaghi E, Shaabani B, Khodayari A, Azizian-Kalandaragh Y, Rahimi R, Powder Technol., 217, 330 (2012)
Yang C, Wang JD, Xiao F, Su XT, Powder Technol., 264, 36 (2014)
Boldyrev VV, Thermochim. Acta, 443(1), 1 (2006)
Yin JZ, Sheng ZH, Zhang WG, Zhang Y, Zhong H, Li RQ, Jiang ZJ, Wang XF, Mater. Lett., 131, 317 (2014)