Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received August 26, 2015
Accepted October 18, 2015
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Synthesis and thermodynamic properties of a novel pyridinium-based asymmetrical gemini ionic liquid
Henan Provincial Key Laboratory of Surface and Interface Science, Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
Korean Journal of Chemical Engineering, December 2015, 32(12), 2369-2374(6), 10.1007/s11814-015-0222-8
Download PDF
Abstract
A novel asymmetrical gemini ionic liquid (GIL), [1-(1-pyridinium-yl-hexyl)-6-methylpiperidinium] dihexafluorophosphate ([PyC6MPi][PF6]2) combined with pyridine, 1-methylpiperidine by 1,6-dibromohexane with PF6 . as anion, was synthesized and characterized by 1H NMR and IR. The molar heat capacity of the GIL was measured via differential scanning calorimetry from 298.15 K to 448.15 K under atmospheric pressure. No phase transition or other thermal anomaly was observed in the solid-phase region (298.15 K to 358.15 K) and liquid-phase region (403.15 K to 448.15 K). The basic properties and thermodynamic functions of the GIL, such as melting point, molar enthalpy and entropy of fusion, heat capacity, enthalpy HT-H298.15 K, and entropy ST-S298.15 K, were also determined from the experimental data. Thermal decomposition kinetics of [PyC6MPi][PF6]2 were investigated by using non-isothermal thermogravimetric analysis in pure nitrogen atmosphere at various heating rates. Thermal decomposition data were, respectively, correlated with Friedman method, Ozawa-Flynn-Wall equation, and ASTM model. The activation energy (E) and pre-exponential factor (logA) values were obtained by using the above three methods.
Keywords
References
Rogers RD, Seddon KR, Science, 302, 792 (2003)
Tang L, Luo G, Kang L, Zhu M, Dai B, Korean J. Chem. Eng., 30(2), 314 (2013)
Kim JE, Kang JW, Lim JS, Korean J. Chem. Eng., 32(8), 1678 (2015)
Han XX, Armstrong DW, Org. Lett., 7, 4205 (2005)
Anderson JL, Ding RF, Ellern A, Armstrong DW, J. Am. Chem. Soc., 127(2), 593 (2005)
Claros M, Galleguillos HR, Brito I, Graber TA, J. Chem. Eng. Data, 57(8), 2147 (2012)
Li XJ, Bruce DW, Shreeve JM, J. Mater. Chem., 19, 8232 (2009)
Lethesh KC, Van Hecke K, Van Meervelt L, Nockemann P, Kirchner B, Zahn S, Parac-Vogt TN, Dehaen W, Binnemans K, J. Phys. Chem. B, 115(26), 8424 (2011)
Yoshida Y, Baba O, Larriba C, Saito G, J. Phys. Chem. B, 111(42), 12204 (2007)
Gardas RL, Coutinho JAP, Ind. Eng. Chem. Res., 47(15), 5751 (2008)
Carlisle TK, Bara JE, Gabriel CJ, Noble RD, Gin DL, Ind. Eng. Chem. Res., 47(18), 7005 (2008)
Liang JH, Ren XQ, Wang JT, Jiang M, Li ZJ, J. Fuel Chem. Technol., 38, 275 (2010)
Zhi HZ, Lu CX, Zhang Q, Luo JJ, Chem. Soc. Chem. Commun., 20, 2878 (2009)
Gary NS, David SJ, Green Chem., 9, 1044 (2007)
Payagala T, Zhang Y, Wanigasekara E, Huang K, Breitbach ZS, Sharma PS, Sidisky LM, Armstrong DW, J. Anal. Chem., 81, 160 (2009)
Anderson JL, Armstrong DW, J. Anal. Chem., 77, 6453 (2005)
Zhancy ZX, Zhou H, Yang L, Tachibana K, Kamijima K, Xu J, Electrochim. Acta, 53(14), 4833 (2008)
Shirota H, Mandai T, Fukazawa H, Kato T, J. Chem. Eng. Data, 56, 5453 (2011)
Payagala T, Huang JM, Breitbach ZS, Sharma PS, Armstrong DW, J. Chem. Mater., 19, 5848 (2007)
Wang J, Wu SD, Yang XZ, J. Chem. Eng. Data, 55(9), 3942 (2010)
Valderrama JO, Toro A, Rojas RE, J. Chem. Thermodyn., 43(7), 1068 (2011)
Ferreira AF, Simoes PN, Ferreira AGM, J. Chem. Thermodyn., 45(1), 16 (2012)
Hu HC, Soriano AN, Leron RB, Li MH, Thermochim. Acta, 519(1-2), 44 (2011)
Chowdhury A, Thynell ST, PROPELLANT-EXPLOS-PYROTECH, 35(6), 572 (2010)
Liang R, Yang MR, Xuan XP, Chin. J. Chem. Eng., 18(5), 736 (2010)
Opfermann JR, Kaisersberger E, Flammersheim HJ, Thermochim. Acta, 391, 119 (2012)
Heym F, Korth W, Thiessen J, Kern C, Jess A, Chem. Ing. Tech., 87, 791 (2015)
Du XJ, Li XD, Zou MS, Yang RJ, Pang SP, Li YC, Thermochim. Acta, 570, 59 (2013)
Pitawala J, Matic A, Martinelli A, Jacobsson P, Koch V, Croce F, J. Phys. Chem. B, 113(31), 10607 (2009)
Kissinger HE, Anal. Chem., 29, 1702 (1957)
Sashina ES, Kashirskii DA, Janowska G, Zaborski M, Thermochim. Acta, 568, 185 (2013)
Friedman HJ, J. Polym. Sci. C: Polym. Symp., 6, 183 (1964)
Flynn JH, Wall LA, J. Polym. Sci. B: Polym. Phys., 4, 32 (1966)
Ozawa T, Bull. Chem. Soc. Jpn., 38, 1881 (1965)
Tang L, Luo G, Kang L, Zhu M, Dai B, Korean J. Chem. Eng., 30(2), 314 (2013)
Kim JE, Kang JW, Lim JS, Korean J. Chem. Eng., 32(8), 1678 (2015)
Han XX, Armstrong DW, Org. Lett., 7, 4205 (2005)
Anderson JL, Ding RF, Ellern A, Armstrong DW, J. Am. Chem. Soc., 127(2), 593 (2005)
Claros M, Galleguillos HR, Brito I, Graber TA, J. Chem. Eng. Data, 57(8), 2147 (2012)
Li XJ, Bruce DW, Shreeve JM, J. Mater. Chem., 19, 8232 (2009)
Lethesh KC, Van Hecke K, Van Meervelt L, Nockemann P, Kirchner B, Zahn S, Parac-Vogt TN, Dehaen W, Binnemans K, J. Phys. Chem. B, 115(26), 8424 (2011)
Yoshida Y, Baba O, Larriba C, Saito G, J. Phys. Chem. B, 111(42), 12204 (2007)
Gardas RL, Coutinho JAP, Ind. Eng. Chem. Res., 47(15), 5751 (2008)
Carlisle TK, Bara JE, Gabriel CJ, Noble RD, Gin DL, Ind. Eng. Chem. Res., 47(18), 7005 (2008)
Liang JH, Ren XQ, Wang JT, Jiang M, Li ZJ, J. Fuel Chem. Technol., 38, 275 (2010)
Zhi HZ, Lu CX, Zhang Q, Luo JJ, Chem. Soc. Chem. Commun., 20, 2878 (2009)
Gary NS, David SJ, Green Chem., 9, 1044 (2007)
Payagala T, Zhang Y, Wanigasekara E, Huang K, Breitbach ZS, Sharma PS, Sidisky LM, Armstrong DW, J. Anal. Chem., 81, 160 (2009)
Anderson JL, Armstrong DW, J. Anal. Chem., 77, 6453 (2005)
Zhancy ZX, Zhou H, Yang L, Tachibana K, Kamijima K, Xu J, Electrochim. Acta, 53(14), 4833 (2008)
Shirota H, Mandai T, Fukazawa H, Kato T, J. Chem. Eng. Data, 56, 5453 (2011)
Payagala T, Huang JM, Breitbach ZS, Sharma PS, Armstrong DW, J. Chem. Mater., 19, 5848 (2007)
Wang J, Wu SD, Yang XZ, J. Chem. Eng. Data, 55(9), 3942 (2010)
Valderrama JO, Toro A, Rojas RE, J. Chem. Thermodyn., 43(7), 1068 (2011)
Ferreira AF, Simoes PN, Ferreira AGM, J. Chem. Thermodyn., 45(1), 16 (2012)
Hu HC, Soriano AN, Leron RB, Li MH, Thermochim. Acta, 519(1-2), 44 (2011)
Chowdhury A, Thynell ST, PROPELLANT-EXPLOS-PYROTECH, 35(6), 572 (2010)
Liang R, Yang MR, Xuan XP, Chin. J. Chem. Eng., 18(5), 736 (2010)
Opfermann JR, Kaisersberger E, Flammersheim HJ, Thermochim. Acta, 391, 119 (2012)
Heym F, Korth W, Thiessen J, Kern C, Jess A, Chem. Ing. Tech., 87, 791 (2015)
Du XJ, Li XD, Zou MS, Yang RJ, Pang SP, Li YC, Thermochim. Acta, 570, 59 (2013)
Pitawala J, Matic A, Martinelli A, Jacobsson P, Koch V, Croce F, J. Phys. Chem. B, 113(31), 10607 (2009)
Kissinger HE, Anal. Chem., 29, 1702 (1957)
Sashina ES, Kashirskii DA, Janowska G, Zaborski M, Thermochim. Acta, 568, 185 (2013)
Friedman HJ, J. Polym. Sci. C: Polym. Symp., 6, 183 (1964)
Flynn JH, Wall LA, J. Polym. Sci. B: Polym. Phys., 4, 32 (1966)
Ozawa T, Bull. Chem. Soc. Jpn., 38, 1881 (1965)