ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received March 4, 2015
Accepted April 13, 2015
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Kinematic analyses of a cross-slot microchannel applicable to cell deformability measurement under inertial or viscoelastic flow

1Department of Chemical Engineering, Ajou University, Suwon 443-749, Korea 2Department of Energy Systems Research, Ajou University, Suwon 443-749, Korea
jumin@ajou.ac.kr
Korean Journal of Chemical Engineering, December 2015, 32(12), 2406-2411(6), 10.1007/s11814-015-0080-4
downloadDownload PDF

Abstract

A cross-slot microchannel has been harnessed for a wide range of applications, such as label-free measurements of cell deformability and rheological characterization of complex fluids. This work investigates flow kinematics in a cross-slot microchannel used for the measurements of cell deformability utilizing finite element method (FEM)-based numerical simulation. In a cross-slot microchannel, the cell is stretched near the stagnation of the cross-slot channel, and cell deformation is significantly affected by its trajectory. Two passive methods, inertia- and viscoelasticitybased, which do not rely on any external force such as an electric field, have been applied to focus particles along the channel centerline so that the cell trajectories are unified. However, it is not well understood how the flow kinematics inside the cross-slot channel is altered by the inertial or viscoelastic effect when these two methods are employed. This work demonstrates that the flow kinematics such as the distributions of flow type and strain rate is notably changed with an increase in the Reynolds number when an inertia-based method is employed. On the other hand, flow kinematics does not significantly deviate from that of an inertia-less Newtonian fluid irrespective of the Weissenberg numbers when a viscoelasticity-based method is used. The current work will be helpful for the design and operation of a cross-slot microdevice for measuring cell deformability.

References

Guck J, Ananthakrishnan R, Mahmood H, Moon TJ, Cunningham CC, Kas J, Biophys. J., 81, 767 (2001)
Gossett DR, Tse HT, Lee SA, Ying Y, Lindgren AG, Yang OO, Rao J, Clark AT, Di Carlo D, Proc. Natl. Acad. Sci. U.S.A, 109, 7630 (2012)
Cha S, Shin T, Lee SS, Shim W, Lee G, Lee SJ, Kim Y, Kim JM, Anal. Chem., 84, 10471 (2012)
Lee SS, Yim Y, Ahn KH, Lee SJ, Biomed. Microdevices, 11, 1021 (2009)
Di Carlo D, J. Lab. Autom., 17, 32 (2012)
Suresh S, Spatz J, Mills JP, Micoulet A, Dao M, Lim CT, Beil M, Seufferlein T, Acta Biomater., 1, 15 (2005)
Chien S, Annu. Rev. Physiol., 49, 177 (1987)
Tse HTK, Gossett DR, Moon YS, Masaeli M, Sohsman M, Ying Y, Mislick K, Adams RP, Rao J, Di Carlo D, Sci. Transl. Med., 5, 212ra1 (2013)
Gossett DR, Tse HTK, Lee SA, Ying Y, Lindgren AG, Yang OO, Rao J, Clark AT, Di Carlo D, Proc. Natl. Acad. Sci. U.S.A., 109, 7630 (2012)
Otto O, Rosendahl P, Mietke A, Golfier S, Herold C, Klaue D, Girardo S, Pagliara S, Ekpenyong A, Jacobi A, Wobus M, Topfner N, Keyser UF, Mansfeld J, Fischer-Friedrich E, Guck J, Nat. Meth., 12, 199 (2015)
Dylla-Spears R, Townsend JE, Jen-Jacobson L, Sohn LL, Muller SJ, Lab Chip, 10, 1543 (2010)
Tanner RI, Huilgol RR, Rheol. Acta, 14, 959 (1975)
Smith DE, Babcock HP, Chu S, Science, 283(5408), 1724 (1999)
Kim JM, Doyle PS, Lab Chip, 7, 213 (2007)
Segre G, Silberberg A, Nature, 189, 209 (1961)
Karnis A, Mason SG, Goldsmith HL, Nature, 200, 159 (1963)
Di Carlo D, Irimia D, Tompkins RG, Toner M, Proc. Natl. Acad. Sci. U.S.A., 104, 18892 (2007)
Leshansky AM, Bransky A, Korin N, Dinnar U, Phys. Rev. Lett., 98, 234501 (2007)
Yang S, Lee SS, Ahn SW, Kang K, Shim W, Lee G, Hyun K, Kim JM, Soft Matter, 8, 5011 (2012)
Yang S, Kim JY, Lee SJ, Lee SS, Kim JM, Lab Chip, 11, 266 (2011)
Kim JY, Ahn S, Lee SS, Kim JM, Lab Chip, 12, 2807 (2012)
Karimi A, Yazdi S, Ardekani AM, Biomicrofluidics, 7, 021501 (2013)
Xuan XC, Zhu JJ, Church C, Microfluid. Nanofluid., 9, 1 (2010)
Di Carlo D, Lab Chip, 9, 3038 (2009)
Amini H, Lee W, Di Carlo D, Lab Chip, 14, 2739 (2014)
Romeo G, D’Avino G, Greco F, Netti PA, Maffettone PL, Lab Chip, 13, 2802 (2013)
D’Avino G, Romeo G, Villone MM, Greco F, Netti PA, Maffettone PL, Lab Chip, 12, 1638 (2012)
Kang K, Lee SS, Hyun K, Lee SJ, Kim JM, Nat. Commun., 4, 2567 (2013)
Bird RB, Armstrong RC, Hassager O, Dynamics of Polymeric Liquids, Wiley Interscience, New York (1987).
Puangkird B, Belblidia F, Webster MF, J. Non-Newton. Fluid Mech., 162(1-3), 1 (2009)
Haward SJ, Oliveira MSN, Alves MA, McKinley GH, Phys. Rev. Lett., 109, 128301 (2012)
Poole PJ, Alves MA, Oliveira PJ, Phys. Rev. Lett., 99, 164503 (2007)
Cha S, Kang K, You JB, Im SG, Kim Y, Kim JM, Rheol. Acta, 53(12), 927 (2014)
Kim JM, Kim C, Ahn KH, Lee SJ, J. Non-Cryst. Solids, 123, 161 (2004)
Liu AW, Bornside DE, Armstrong RC, Brown RA, J. Non-Newton. Fluid Mech., 77(3), 153 (1998)
Brooks AN, Hughes TJR, Comput. Method. Appl. M., 32, 199 (1982)
Owens RG, Phillips TN, Computational Rheology, World Scientific Publishing Co., Singapore (2002).
YURAN F, CROCHET MJ, J. Non-Newton. Fluid Mech., 57(2-3), 283 (1995)
Tanyeri M, Johnson-Chavarria EM, Schroeder CM, Appl. Phys. Lett., 96, 224101 (2010)
Lee JS, Dylla-Spears R, Teclemariam NP, Muller SJ, Appl. Phys. Lett., 90, 074103 (2007)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로