ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received January 3, 2015
Accepted May 16, 2015
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Surface modification of poly(vinylidene fluoride) membrane with hydrophilic and anti-fouling performance via a two-step polymerization

School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China 1State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab., Chemical Engineering Research Center, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
chemxuzl@ecust.edu.cn
Korean Journal of Chemical Engineering, December 2015, 32(12), 2492-2500(9), 10.1007/s11814-015-0105-z
downloadDownload PDF

Abstract

The surface modification of poly (vinylidene fluoride) (PVDF) membrane was performed via a two-step polymerization reactions. Poly (acrylic acid) (PAAc) was first grafted onto the membrane surface for the preparation of PVDF-g-PAAc membrane, and then poly (ethylene glycol) 200 (PEG 200) was immobilized on the membrane surface by the esterification reaction for the fabrication of PVDF-g-PEGA membrane. Attenuated total reflectance (ATR) FTIR, X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), and protein adsorption, water flux, water content and dynamic contact angle were conducted to characterize the structures and performance of the resultant PVDF membranes. The experimental results showed that the adsorption of bovine serum albumin (BSA) on the PVDF-g-PEGA membrane decreased about 80% when the grafting ratio reached to 15 wt%, compared with the pristine PVDF membrane. Moreover, the water contact angle of the membrane dropped to 60.5o, while the membrane pore sizes remained little changed.

References

Liu F, Hashim NA, Liu YT, Abed MRM, Li K, J. Membr. Sci., 375(1-2), 1 (2011)
Liu J, Lu X, Li J, Wu C, J. Polym. Res., 21, 568 (2014)
Kang GD, Cao YM, J. Membr. Sci., 463, 145 (2014)
Sun D, Yang P, Li L, Yang HH, Li BB, Korean J. Chem. Eng., 31(10), 1877 (2014)
Park HH, Lim CW, Jo HD, Choi WK, Lee HK, Korean J. Chem. Eng., 24(4), 693 (2007)
Kim KM, Hepowit LR, Kim JC, Lee YG, Ko JM, Korean J. Chem. Eng., 32(4), 717 (2015)
Liu F, Abed MRM, Li K, Chem. Eng. Sci., 66(1), 27 (2011)
Chang Y, Ko CY, Shih YJ, Quemener D, Deratani A, Wei TC, Wang DM, Lai JY, J. Membr. Sci., 345(1-2), 160 (2009)
Kemell M, Farm E, Ritala M, Leskela M, Eur. Polym. J., 44, 3564 (2008)
Venault A, Liu YH, Wu JR, Yang HS, Chang Y, Lai JY, Aimar P, J. Membr. Sci., 450, 340 (2014)
Rana D, Matsuura T, Chem. Rev., 110(4), 2448 (2010)
Pezeshk N, Narbaitz RM, Desalination, 287, 247 (2012)
Liu F, Xu YY, Zhu BK, Zhang F, Zhu LP, J. Membr. Sci., 345(1-2), 331 (2009)
Hashim NA, Liu F, Li K, J. Membr. Sci., 345(1-2), 134 (2009)
Ochoa NA, Masuelli M, Marchese J, J. Membr. Sci., 226(1-2), 203 (2003)
Hester JF, Mayes AM, J. Membr. Sci., 202(1-2), 119 (2002)
Boributh S, Chanachai A, Jiraratananon R, J. Membr. Sci., 342(1-2), 97 (2009)
Li MZ, Li JH, Shao XS, Miao J, Wang JB, Zhang QQ, Xu XP, J. Membr. Sci., 405-406, 141 (2012)
Chang Y, Chang WJ, Shih YJ, Wei TC, Hsiue GH, ACS Appl. Mater. Interfaces, 3, 1228 (2011)
Chang Y, Shih YJ, Ruaan RC, Higuchi A, Chen WY, Lai JY, J. Membr. Sci., 309(1-2), 165 (2008)
Zhang MG, Nguyen QT, Ping ZH, J. Membr. Sci., 327(1-2), 78 (2009)
Brewis D, Mathieson I, Sutherland I, Cayless R, Dahm R, Int. J. Adhes. Adhes., 16, 87 (1996)
Ross GJ, Watts JF, Hill MP, Morrissey P, Polymer, 41(5), 1685 (2000)
Byun YJ, Kim JH, Kim SS, Desalin. Water. Treat., 51, 5371 (2013)
Rahimpour A, Madaeni SS, Zereshki S, Mansourpanah Y, Appl. Surf. Sci., 255(16), 7455 (2009)
Ying L, Wang P, Kang ET, Neoh KG, Macromolecules, 35(3), 673 (2002)
Wang P, Tan KL, Kang ET, Neoh KG, J. Membr. Sci., 195(1), 103 (2002)
Peng B, Li YY, Zhao ZG, Chen YM, Han CC, J. Appl. Polym. Sci., 130(5), 3112 (2013)
Kang GD, Liu M, Lin B, Cao YM, Yuan Q, Polymer, 48(5), 1165 (2007)
Liu QF, Lee CH, Kim H, Sep. Sci. Technol., 48, 1209 (2010)
Bottino A, Capannelli G, Comite A, J. Membr. Sci., 273(1-2), 20 (2006)
Zhang MG, Nguyen QT, Ping ZH, J. Membr. Sci., 327(1-2), 78 (2009)
Tamura M, Uragami T, Sugihara M, Polymer, 22, 829 (1981)
Zhao YP, Zhao HY, Chen L, Feng X, Zhang QS, Wang JM, Zhang R, J. Polym. Res., 20(1), 1 (2013)
Hsu CC, Wu CS, Liu YL, J. Membr. Sci., 450, 257 (2014)
Zhao YH, Zhu BK, Kong L, Xu YY, Langmuir, 23(10), 5779 (2007)
Zhao XJ, Cheng J, Chen SJ, Zhang J, Wang XL, Colloid Polym. Sci., 288, 1327 (2010)
Gu LX, Liu ZF, Hydrophilic fibers (Chinese), China Petrochemical Press, Beijing (1997).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로