Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received April 9, 2015
Accepted May 13, 2015
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Separation of CO2 from flue gases using hydroquinone clathrate compounds
Department of Environmental Engineering, Kongju National University, 275 Budae-dong, Cheonan-si, Chungnam 331-717, Korea 1IT Convergence Materials R&D Group, Korea Institute of Industrial Technology, 89 Yangdaegiro-gil, Ipjang-myeon, Cheonan-si, Chungnam 331-822, Korea 2Department of Energy and Resources Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 606-791, Korea
Korean Journal of Chemical Engineering, December 2015, 32(12), 2507-2511(5), 10.1007/s11814-015-0101-3
Download PDF
Abstract
Hydroquinone (HQ) samples reacting with (CO2+N2) gas mixtures with various compositions at pressures ranging from 10 to 50 bar are analyzed using spectroscopic methods and an elemental analyzer. The results indicate that while both CO2 and N2 can react with HQ to form clathrate compounds, CO2 has higher selectivity than N2. In particular, at an operating pressure of 20 bar or greater, the CO2 content in the clathrate compound is 85mol% or higher regardless of the feed gas composition. Moreover, if a two-step clathrate-based process is adapted, CO2 at a rate of 93 mol% or higher can be recovered from flue gases. Thus, the clathrate compound described here can be used as a CO2 separation/recovery medium for CO2 in flue gases.
Keywords
References
Sloan ED, Koh CA, Clathrate hydrates of natural gases, CRC Press, Boca Raton, FL (2008).
Hammerschmidt EG, Ind. Eng. Chem., 26, 851 (1934)
Seol J, Lee H, Korean J. Chem. Eng., 30(4), 771 (2013)
Kang SP, Lee H, Environ. Sci. Technol., 34, 4397 (2000)
Seo YT, Kang SP, Lee H, Lee CS, Sung WM, Korean J. Chem. Eng., 17(6), 659 (2000)
Ho MT, Leamon G, Allinson GW, Wiley DE, Ind. Eng. Chem. Res., 45(8), 2546 (2006)
Yang H, Xu Z, Fan M, Gupta R, Slimane RB, Bland AE, Wright I, J. Environ. Sci., 20, 14 (2008)
Ahn S, Song HJ, Park JW, Lee JH, Lee IY, Jang KR, Korean J. Chem. Eng., 27(5), 1576 (2010)
Bae TH, Lee JS, Qiu W, Koros WJ, Jones CW, Nair S, Angew. Chem.-Int. Edit., 49, 9863 (2010)
Jin HG, Han SH, Lee YM, Yeo YK, Korean J. Chem. Eng., 28(1), 41 (2011)
Kikkinides ES, Yang RT, Cho SH, Ind. Eng. Chem. Res., 32, 2714 (1993)
Chue KT, Kim JN, Yoo YJ, Cho SH, Yang RT, Ind. Eng. Chem. Res., 34(2), 591 (1995)
Na BK, Koo KK, Eum HM, Lee H, Song HK, Korean J. Chem. Eng., 18(2), 220 (2001)
Binns M, Oh SY, Kwak DH, Kim JK, Korean J. Chem. Eng., 32(3), 383 (2015)
ZareNezhad B, Mottahedin M, Varaminian F, Korean J. Chem. Eng., 30(12), 2248 (2013)
Lee JW, Lee Y, Takeya S, Kawamura T, Yamamoto Y, Lee YJ, Yoon JH, J. Phys. Chem. B, 114(9), 3254 (2010)
Lee JW, Choi KJ, Lee Y, Yoon JH, Chem. Phys. Lett., 528, 34 (2012)
Ripmeester JA, Chem. Phys. Lett., 74, 536 (1980)
Atwood JL, Davies JED, MacNicol DD, Inclusion compounds, Academic Press, Orlando, FL (1984).
Kubinyi M, Billes F, Grofcsik A, Keresztury G, J. Mol. Spectrosc., 266, 339 (1992)
Ida JI, Lin YS, Environ. Sci. Technol., 37, 1999 (2003)
Ding Y, Alpay E, Chem. Eng. Sci., 55(17), 3461 (2000)
Smith JM, Ness HCV, Abbott MM, Introduction to chemical engineering thermodynamics, McGraw-Hill Companies Inc., New York (2005).
Prausnitz JM, Lichtenthaler RN, Azevedo EGD, Molecular thermodynamics of fluid-phase equilibria, Prentice-Hall, Englewood Cliffs, NJ (1986).
Hammerschmidt EG, Ind. Eng. Chem., 26, 851 (1934)
Seol J, Lee H, Korean J. Chem. Eng., 30(4), 771 (2013)
Kang SP, Lee H, Environ. Sci. Technol., 34, 4397 (2000)
Seo YT, Kang SP, Lee H, Lee CS, Sung WM, Korean J. Chem. Eng., 17(6), 659 (2000)
Ho MT, Leamon G, Allinson GW, Wiley DE, Ind. Eng. Chem. Res., 45(8), 2546 (2006)
Yang H, Xu Z, Fan M, Gupta R, Slimane RB, Bland AE, Wright I, J. Environ. Sci., 20, 14 (2008)
Ahn S, Song HJ, Park JW, Lee JH, Lee IY, Jang KR, Korean J. Chem. Eng., 27(5), 1576 (2010)
Bae TH, Lee JS, Qiu W, Koros WJ, Jones CW, Nair S, Angew. Chem.-Int. Edit., 49, 9863 (2010)
Jin HG, Han SH, Lee YM, Yeo YK, Korean J. Chem. Eng., 28(1), 41 (2011)
Kikkinides ES, Yang RT, Cho SH, Ind. Eng. Chem. Res., 32, 2714 (1993)
Chue KT, Kim JN, Yoo YJ, Cho SH, Yang RT, Ind. Eng. Chem. Res., 34(2), 591 (1995)
Na BK, Koo KK, Eum HM, Lee H, Song HK, Korean J. Chem. Eng., 18(2), 220 (2001)
Binns M, Oh SY, Kwak DH, Kim JK, Korean J. Chem. Eng., 32(3), 383 (2015)
ZareNezhad B, Mottahedin M, Varaminian F, Korean J. Chem. Eng., 30(12), 2248 (2013)
Lee JW, Lee Y, Takeya S, Kawamura T, Yamamoto Y, Lee YJ, Yoon JH, J. Phys. Chem. B, 114(9), 3254 (2010)
Lee JW, Choi KJ, Lee Y, Yoon JH, Chem. Phys. Lett., 528, 34 (2012)
Ripmeester JA, Chem. Phys. Lett., 74, 536 (1980)
Atwood JL, Davies JED, MacNicol DD, Inclusion compounds, Academic Press, Orlando, FL (1984).
Kubinyi M, Billes F, Grofcsik A, Keresztury G, J. Mol. Spectrosc., 266, 339 (1992)
Ida JI, Lin YS, Environ. Sci. Technol., 37, 1999 (2003)
Ding Y, Alpay E, Chem. Eng. Sci., 55(17), 3461 (2000)
Smith JM, Ness HCV, Abbott MM, Introduction to chemical engineering thermodynamics, McGraw-Hill Companies Inc., New York (2005).
Prausnitz JM, Lichtenthaler RN, Azevedo EGD, Molecular thermodynamics of fluid-phase equilibria, Prentice-Hall, Englewood Cliffs, NJ (1986).