Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received June 16, 2014
Accepted July 26, 2014
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Preparation of activated carbon aerogel and its application to electrode material for electric double layer capacitor in organic electrolyte: Effect of activation temperature
Department of Chemical Engineering, Myongji University, Yongin 449-728, Korea 1R&D Center, Vitzrocell Co., Ltd., Chungnam 340-861, Korea
Korean Journal of Chemical Engineering, February 2015, 32(2), 248-254(7), 10.1007/s11814-014-0215-z
Download PDF
Abstract
Carbon aerogel was chemically activated with KOH at various activation temperatures with the aim of improving the electrochemical performance of carbon aerogel for EDLC electrode. Electrochemical performance of activated carbon aerogel electrode was determined by cyclic voltammetry and galvanostatic charge/discharge methods using coin-type EDLC cell in organic electrolyte. Activation temperature played an important role in determining the electrochemical performance of activated carbon aerogel for EDLC electrode. Specific capacitance of activated carbon aerogel at a high current density (5 A/g) showed a volcano-shaped curve with respect to activation temperature. Excessively high activation temperature could have an adverse effect on the electrochemical properties of activated carbon aerogel due to the low electrical conductivity caused by a collapse of characteristic structure of carbon aerogel. Among the carbon samples, carbon aerogel activated at 800 ℃ with a high surface area and a well-developed porous structure exhibited the highest specific capacitance. In addition, carbon aerogel activated at 800 ℃ retained a considerable specific capacitance at a high current density even after 1000 cycles of charge/discharge. Therefore, it is concluded that carbon aerogel activated with KOH at 800 ℃ can serve as an efficient electrode material for commercial EDLC with a high power density.
Keywords
References
Sharma P, Bhatti TS, Energy Conv. Manag., 51(12), 2901 (2010)
Frackowiak E, Abbas Q, Beguin F, J. Energy Chem., 22, 226 (2013)
Candelariaa SL, Shao Y, Zhouc W, Li X, Xiao J, Zhang JG, Wang Y, Liu J, Li J, Cao G, Nano Energy, 1, 195 (2012)
Jeong MG, Zhuo K, Cherevko S, Chung CH, Korean J. Chem. Eng., 29(12), 1802 (2012)
Thambidurai A, Lourdusamy JK, John JV, Ganesan S, Korean J. Chem. Eng., 31(2), 268 (2014)
Frackowiak E, Beguin F, Carbon, 39, 937 (2001)
Wei L, Yushin G, Nano Energy, 1, 552 (2012)
Jeong E, Jung MJ, Cho SH, Lee SI, Lee YS, Colloids Surf., A, 377, 243 (2011)
Elmouwahidi A, Zapata-Benabithe Z, Carrasco-Marin F, Moreno-Castilla C, Bioresour. Technol., 111, 185 (2012)
Zhang Y, Feng H, Wu XB, Wang LZ, Zhang AQ, Xia TC, Dong HC, Li XF, Zhang LS, Int. J. Hydrog. Energy, 34(11), 4889 (2009)
Guo Y, Shi Z, Chen M, Wang C, J. Power Sources, 252, 235 (2014)
Huang Y, Liang J, Chen Y, Small, 8, 1805 (2012)
Vivekchand SRC, Rout CS, Subrahmanyam KS, Govindaraj A, Rao CNR, J. Chem. Sci., 120, 9 (2008)
Perera SD, Liyanage AD, Nijem N, Ferraris JP, Chabal YJ, Balkus KJ, J. Power Sources, 230, 130 (2013)
Wu ZS, Zhou G, Yin LC, Ren W, Li F, Cheng HM, Nano Energy, 1, 107 (2012)
Yoon SH, Lim S, Song Y, Ota Y, Qiao W, Tanaka A, Mochida I, Carbon, 42, 1723 (2004)
Zhong J, Yang Z, Mukherjee R, Thomas AV, Zhu K, Sun P, Lian J, Zhu H, Koratkar N, Nano Energy, 2, 1025 (2013)
Niu Z, Luan P, Shao Q, Dong H, Li J, Chen J, Zhao D, Cai L, Zhou W, Chen X, Xie S, Energy Environ. Sci., 5, 8726 (2012)
Pekala RW, Farmer JC, Alviso CT, Tran TD, Mayer ST, Miller JM, Dunn B, J. Non-Cryst. Solids, 225, 74 (1998)
Wu XL, Jia WB, Chem. Eng. J., 245, 210 (2014)
Robertson C, Micropor. Mesopor. Mater., 179, 151 (2013)
Hwang SW, Hyun SH, J. Non-Cryst. Solids, 347, 238 (2004)
Wang X, Wang X, Liu L, Bai L, An H, Zheng L, Yi L, J. Non-Cryst. Solids, 357, 793 (2011)
Lee YJ, Kim GP, Bang Y, Yi J, Seo JG, Song IK, Mater. Res. Bull., 50, 240 (2014)
Xia K, Gao Q, Jiang J, Hu J, Carbon, 46, 1718 (2008)
Nabaisa JMV, Nunes P, Carrott PJM, Carrott MMLR, Garcia AM, Diaz-Diez MA, Fuel Process. Technol., 89
Lee SY, Park SJ, J. Solid State Chem., 207, 158 (2013)
Sahin O, Saka C, Bioresour. Technol., 136, 163 (2013)
Lee SY, Park SJ, J. Colloid Interface Sci., 389, 230 (2013)
de Souza LKC, Wickramaratne NP, Ello AS, Costa MJF, da Costa CEF, Jaroniec M, Carbon, 65, 334 (2013)
Zhao XY, Huang SS, Cao JP, Xi SC, Wei XY, Kamamoto J, Takarada T, J. Anal. Appl. Pyrol., 105, 116 (2014)
Xu B, Wu F, Su YF, Cao GP, Chen S, Zhou ZM, Yang YS, Electrochim. Acta, 53(26), 7730 (2008)
Lei CH, Markoulidis F, Ashitaka Z, Lekakou C, Electrochim. Acta, 92, 183 (2013)
Frackowiak E, Abbas Q, Beguin F, J. Energy Chem., 22, 226 (2013)
Candelariaa SL, Shao Y, Zhouc W, Li X, Xiao J, Zhang JG, Wang Y, Liu J, Li J, Cao G, Nano Energy, 1, 195 (2012)
Jeong MG, Zhuo K, Cherevko S, Chung CH, Korean J. Chem. Eng., 29(12), 1802 (2012)
Thambidurai A, Lourdusamy JK, John JV, Ganesan S, Korean J. Chem. Eng., 31(2), 268 (2014)
Frackowiak E, Beguin F, Carbon, 39, 937 (2001)
Wei L, Yushin G, Nano Energy, 1, 552 (2012)
Jeong E, Jung MJ, Cho SH, Lee SI, Lee YS, Colloids Surf., A, 377, 243 (2011)
Elmouwahidi A, Zapata-Benabithe Z, Carrasco-Marin F, Moreno-Castilla C, Bioresour. Technol., 111, 185 (2012)
Zhang Y, Feng H, Wu XB, Wang LZ, Zhang AQ, Xia TC, Dong HC, Li XF, Zhang LS, Int. J. Hydrog. Energy, 34(11), 4889 (2009)
Guo Y, Shi Z, Chen M, Wang C, J. Power Sources, 252, 235 (2014)
Huang Y, Liang J, Chen Y, Small, 8, 1805 (2012)
Vivekchand SRC, Rout CS, Subrahmanyam KS, Govindaraj A, Rao CNR, J. Chem. Sci., 120, 9 (2008)
Perera SD, Liyanage AD, Nijem N, Ferraris JP, Chabal YJ, Balkus KJ, J. Power Sources, 230, 130 (2013)
Wu ZS, Zhou G, Yin LC, Ren W, Li F, Cheng HM, Nano Energy, 1, 107 (2012)
Yoon SH, Lim S, Song Y, Ota Y, Qiao W, Tanaka A, Mochida I, Carbon, 42, 1723 (2004)
Zhong J, Yang Z, Mukherjee R, Thomas AV, Zhu K, Sun P, Lian J, Zhu H, Koratkar N, Nano Energy, 2, 1025 (2013)
Niu Z, Luan P, Shao Q, Dong H, Li J, Chen J, Zhao D, Cai L, Zhou W, Chen X, Xie S, Energy Environ. Sci., 5, 8726 (2012)
Pekala RW, Farmer JC, Alviso CT, Tran TD, Mayer ST, Miller JM, Dunn B, J. Non-Cryst. Solids, 225, 74 (1998)
Wu XL, Jia WB, Chem. Eng. J., 245, 210 (2014)
Robertson C, Micropor. Mesopor. Mater., 179, 151 (2013)
Hwang SW, Hyun SH, J. Non-Cryst. Solids, 347, 238 (2004)
Wang X, Wang X, Liu L, Bai L, An H, Zheng L, Yi L, J. Non-Cryst. Solids, 357, 793 (2011)
Lee YJ, Kim GP, Bang Y, Yi J, Seo JG, Song IK, Mater. Res. Bull., 50, 240 (2014)
Xia K, Gao Q, Jiang J, Hu J, Carbon, 46, 1718 (2008)
Nabaisa JMV, Nunes P, Carrott PJM, Carrott MMLR, Garcia AM, Diaz-Diez MA, Fuel Process. Technol., 89
Lee SY, Park SJ, J. Solid State Chem., 207, 158 (2013)
Sahin O, Saka C, Bioresour. Technol., 136, 163 (2013)
Lee SY, Park SJ, J. Colloid Interface Sci., 389, 230 (2013)
de Souza LKC, Wickramaratne NP, Ello AS, Costa MJF, da Costa CEF, Jaroniec M, Carbon, 65, 334 (2013)
Zhao XY, Huang SS, Cao JP, Xi SC, Wei XY, Kamamoto J, Takarada T, J. Anal. Appl. Pyrol., 105, 116 (2014)
Xu B, Wu F, Su YF, Cao GP, Chen S, Zhou ZM, Yang YS, Electrochim. Acta, 53(26), 7730 (2008)
Lei CH, Markoulidis F, Ashitaka Z, Lekakou C, Electrochim. Acta, 92, 183 (2013)