Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received May 16, 2014
Accepted July 17, 2014
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Synthesis and thermal properties of polyimides containing azomethine linkage for processable high-performance engineering plastics
Department of Chemistry, Government College University, Faisalabad 38000, Pakistan 1National Engineering and Scientific Commission, P. O. Box 2216, Islamabad, Pakistan
Korean Journal of Chemical Engineering, February 2015, 32(2), 362-368(7), 10.1007/s11814-014-0205-1
Download PDF
Abstract
A new series of polyimides having azomethine functionality in backbone was synthesized by two-steps polycondensation method. Five substituted aromatic diamines--N-(4-aminobenzylidene)-2chloro-6-methylbenzene-1,4-diamine (DA1), N-(4-aminobenzylidene)-2-methoxybenzene-1,4-diamine (DA2), N-(4-aminobenzylidene)-2-methylbenzene-1,4-diamine (DA3), N-(4-aminobenzylidene)-3-methylbenzene-1,4-diamine (DA4) and N,(4-aminobenzylidene)-2-hydroxybenzene-1,4-diamine (DA5)--were prepared and condensed with 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) to obtain poly(azomethine imide). All synthesized polyimides PI(1-5) were fully characterized by elemental analyses, FTIR, 1H-NMR, having amorphous nature and are soluble in dmac, dmf, and dmso, m-cresol due to presence of azomethine functionality. The inherent viscosities and moisture absorption of all polyimides lie in_x000D_
the range of 0.65-0.85 dL gm.1 and 0.68-0.82% respectively. Thermal stability was assessed by 10% weight loss temperature and the degradation temperature of the resultant polymers falls in the ranges from 480-535 ℃ in nitrogen. The glass transition temperature was in the range of 225-330 ℃. Due to above mentioned attractive properties, polyimidebased material are attractive for processable high-performance engineering plastics and starting material for fabrication of new polymers.
References
Ghosh MK, Metal KL, Polyimides: fundamentals and applications, Marcel Dekker, New York (1996)
Li F, Fang S, Ge JJ, Honigfort PS, Chen JC, Harris FW, Cheng SZD, Polymer, 40(16), 4571 (1999)
Choi KH, Lee KH, Jung JC, J. Polym. Sci. A: Polym. Chem., 39(21), 3818 (2001)
Li HS, Liu JG, Rui JM, Fan L, Yang SY, J. Polym. Sci. A: Polym. Chem., 44(8), 2665 (2006)
Yang CP, Su YY, Hsiao FZ, Polymer, 45(22), 7529 (2004)
Liaw DJ, Chang FC, Leung MK, Chou MY, Muellen K, Macromolecules, 38(9), 4024 (2005)
Liu BJ, Hu W, Matsumoto T, Jiang ZH, Ando S, J. Polym. Sci. A: Polym. Chem., 43(14), 3018 (2005)
Tamai S, Yamaguchi A, Ohta M, Polymer, 37(16), 3683 (1996)
Yang CP, Hsiao SH, Hsu MF, J. Polym. Sci. A: Polym. Chem., 40(4), 524 (2002)
Yang CP, Chen RS, Chen KH, J. Appl. Polym. Sci., 95(4), 922 (2005)
Moy TM, Deporter CD, McGrath JE, Polymer, 34, 819 (1993)
Xu JW, He CB, Chung TS, J. Polym. Sci. A: Polym. Chem., 39(17), 2998 (2001)
Zheng HB, Wang ZY, Macromolecules, 33(12), 4310 (2000)
Hergenrother PM, Watson KA, Smith JG, Connell JW, Yokota R, Polymer, 43(19), 5077 (2002)
Fang XZ, Li QX, Wang Z, Yang ZH, Gao LX, Ding MX, J. Polym. Sci. A: Polym. Chem., 42(9), 2130 (2004)
Hsiao SH, Lin KH, J. Polym. Sci. A: Polym. Chem., 43(2), 331 (2005)
Shao Y, Li YF, Zhao X, Wang XL, Ma T, Yang FC, J. Polym. Sci. A: Polym. Chem., 44(23), 6836 (2006)
Reddy DS, Chou CH, Shu CF, Lee GH, Polymer, 44(3), 557 (2003)
Utkarsh S, Rao KV, Rakshit AK, J. Appl. Polym. Sci., 88, 152 (2003)
Farcas A, Grigoras M, High Perform. Polym., 13, 201 (2001)
Grigoras M, Catanescu CO, Polym. Rev., 44, 131 (2004)
Grigoras M, Colotin G, Macromol. Chem. Phys., 202, 2262 (2001)
Li CH, Chang TC, J. Polym. Sci. Part A: Polym. Chem., 29, 361 (1991)
Yang CJ, Jenekhe SA, Chem. Mater., 3, 878 (1991)
Xie S, Zhang Z, Wei W, J. Korean Phy. Soc., 51, 1536 (2007)
Zheng YH, Zhai Y, Li GZ, Guo BH, Zeng XM, Wang LC, Yu HY, Guo JM, J. Appl. Polym. Sci., 121(2), 702 (2011)
Pavia DL, Lampman GM, Kriz GS, Introduction to spectroscopy, Harcourt Brace College Publishers, New York, 211 (1996)
Hsiao SH, Yang CP, Chung CL, J. Polym. Sci. A: Polym. Chem., 41(13), 2001 (2003)
Zhang SJ, Li YF, Wang XL, Yin DX, Shao Y, Zhao X, Chinese Chem. Lett., 16, 1165 (2005)
Hariharan R, Bhuvana S, Sarojadevi M, High Perform. Polym., 18, 163 (2006)
Catenescu O, Grigoras M, Colotin G, Dobreanu A, Hurduc N, Simionescu CI, Eur. Polym. J., 37, 2213 (2001)
Vasanthi BJ, Ravikumar L, Eur. Polym. J., 43, 4325 (2007)
Yu GP, Liu C, Zhou HX, Wang JY, Lin EC, Jian XG, Polymer, 50(19), 4520 (2009)
Boinard P, Banks WM, Pethrick RA, Polymer, 46(7), 2218 (2005)
Li F, Fang S, Ge JJ, Honigfort PS, Chen JC, Harris FW, Cheng SZD, Polymer, 40(16), 4571 (1999)
Choi KH, Lee KH, Jung JC, J. Polym. Sci. A: Polym. Chem., 39(21), 3818 (2001)
Li HS, Liu JG, Rui JM, Fan L, Yang SY, J. Polym. Sci. A: Polym. Chem., 44(8), 2665 (2006)
Yang CP, Su YY, Hsiao FZ, Polymer, 45(22), 7529 (2004)
Liaw DJ, Chang FC, Leung MK, Chou MY, Muellen K, Macromolecules, 38(9), 4024 (2005)
Liu BJ, Hu W, Matsumoto T, Jiang ZH, Ando S, J. Polym. Sci. A: Polym. Chem., 43(14), 3018 (2005)
Tamai S, Yamaguchi A, Ohta M, Polymer, 37(16), 3683 (1996)
Yang CP, Hsiao SH, Hsu MF, J. Polym. Sci. A: Polym. Chem., 40(4), 524 (2002)
Yang CP, Chen RS, Chen KH, J. Appl. Polym. Sci., 95(4), 922 (2005)
Moy TM, Deporter CD, McGrath JE, Polymer, 34, 819 (1993)
Xu JW, He CB, Chung TS, J. Polym. Sci. A: Polym. Chem., 39(17), 2998 (2001)
Zheng HB, Wang ZY, Macromolecules, 33(12), 4310 (2000)
Hergenrother PM, Watson KA, Smith JG, Connell JW, Yokota R, Polymer, 43(19), 5077 (2002)
Fang XZ, Li QX, Wang Z, Yang ZH, Gao LX, Ding MX, J. Polym. Sci. A: Polym. Chem., 42(9), 2130 (2004)
Hsiao SH, Lin KH, J. Polym. Sci. A: Polym. Chem., 43(2), 331 (2005)
Shao Y, Li YF, Zhao X, Wang XL, Ma T, Yang FC, J. Polym. Sci. A: Polym. Chem., 44(23), 6836 (2006)
Reddy DS, Chou CH, Shu CF, Lee GH, Polymer, 44(3), 557 (2003)
Utkarsh S, Rao KV, Rakshit AK, J. Appl. Polym. Sci., 88, 152 (2003)
Farcas A, Grigoras M, High Perform. Polym., 13, 201 (2001)
Grigoras M, Catanescu CO, Polym. Rev., 44, 131 (2004)
Grigoras M, Colotin G, Macromol. Chem. Phys., 202, 2262 (2001)
Li CH, Chang TC, J. Polym. Sci. Part A: Polym. Chem., 29, 361 (1991)
Yang CJ, Jenekhe SA, Chem. Mater., 3, 878 (1991)
Xie S, Zhang Z, Wei W, J. Korean Phy. Soc., 51, 1536 (2007)
Zheng YH, Zhai Y, Li GZ, Guo BH, Zeng XM, Wang LC, Yu HY, Guo JM, J. Appl. Polym. Sci., 121(2), 702 (2011)
Pavia DL, Lampman GM, Kriz GS, Introduction to spectroscopy, Harcourt Brace College Publishers, New York, 211 (1996)
Hsiao SH, Yang CP, Chung CL, J. Polym. Sci. A: Polym. Chem., 41(13), 2001 (2003)
Zhang SJ, Li YF, Wang XL, Yin DX, Shao Y, Zhao X, Chinese Chem. Lett., 16, 1165 (2005)
Hariharan R, Bhuvana S, Sarojadevi M, High Perform. Polym., 18, 163 (2006)
Catenescu O, Grigoras M, Colotin G, Dobreanu A, Hurduc N, Simionescu CI, Eur. Polym. J., 37, 2213 (2001)
Vasanthi BJ, Ravikumar L, Eur. Polym. J., 43, 4325 (2007)
Yu GP, Liu C, Zhou HX, Wang JY, Lin EC, Jian XG, Polymer, 50(19), 4520 (2009)
Boinard P, Banks WM, Pethrick RA, Polymer, 46(7), 2218 (2005)