Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 17, 2014
Accepted August 10, 2014
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
A pore-scale model for the cathode electrode of a proton exchange membrane fuel cell by lattice Boltzmann method
Center for Fuel Cell Research, School of Mechanical Engineering, Shiraz University, Shiraz 71348-51154, Iran
h-akbari@shirazu.ac.ir
Korean Journal of Chemical Engineering, March 2015, 32(3), 397-405(9), 10.1007/s11814-014-0229-6
Download PDF
Abstract
A pore-scale model based on the lattice Boltzmann method (LBM) is proposed for the cathode electrode of a PEM fuel cell with heterogeneous and anisotropic porous gas diffusion layer (GDL) and interdigitated flow field. An active approach is implemented to model multi-component transport in GDL, which leads to enhanced accuracy, especially at higher activation over-potentials. The core of the paper is the implementation of an electrochemical reaction with an active approach in a multi-component lattice Boltzmann model for the first time. After model validation, the capability of the presented model is demonstrated through a parametric study. Effects of activation over-potential, pressure differential between inlet and outlet gas channels, land width to channel width ratio, and channel width are investigated. The results show the significant influence of GDL microstructure on the oxygen distribution and current density profile.
Keywords
References
Mench MM, Fuel cell engines, Wiley, New Jersey (2008)
Larminie J, Dicks A, Fuel cell systems explained, Wiley, England (2003)
Wang Y, Chen KS, Mishler J, Cho SC, Adroher XC, Appl. Energy, 88(4), 981 (2011)
Khan MA, Sunden B, Yuan JL, J. Power Sources, 196(19), 7899 (2011)
Song GH, Meng H, Acta Mech. Sin., 29, 318 (2013)
Ostadi H, Rama P, Liu Y, Chen R, Zhang X, Jiang K, Microelectron. Eng., 87, 1640 (2010)
Ismail MS, Hughes KJ, Ingham DB, Ma L, Pourkashanian M, Appl. Energy, 95, 50 (2012)
Chen S, Doolen GD, Annu. Rev. Fluid Mech., 30, 329 (1998)
Joshi AS, Grew KN, Peracchio AA, Chiu WKS, J. Power Sources, 164(2), 631 (2007)
Park J, Matsubara M, Li X, J. Power Sources, 173(1), 404 (2007)
Delavar MA, Farhadi M, Sedighi K, Int. J. Hydrog. Energy, 35(17), 9306 (2010)
Niu XD, Munekata T, Hyodo SA, Suga K, J. Power Sources, 172(2), 542 (2007)
Park J, Li X, J. Power Sources, 178(1), 248 (2008)
Koido T, Furusawa T, Moriyama K, J. Power Sources, 175(1), 127 (2008)
Mukherjee PP, Wang CY, Kang QJ, Electrochim. Acta, 54(27), 6861 (2009)
Hao L, Cheng P, J. Power Sources, 186(1), 104 (2009)
Hao L, Cheng P, Int. J. Heat Mass Transf., 55(1-3), 133 (2012)
Hao L, Cheng P, J. Power Sources, 195(12), 3870 (2010)
Ben Salah Y, Tabe Y, Chikahisa T, J. Power Sources, 199, 85 (2012)
Han B, Yu J, Meng H, J. Power Sources, 202, 175 (2012)
Chen L, Luan HB, He YL, Tao WQ, Int. J. Therm. Sci., 5, 132 (2012)
Chen L, Luan HB, Feng YL, Song CX, He YL, Tao WQ, Int. J. Heat Mass Transf., 55(13-14), 3834 (2012)
Chen L, Feng YL, Song CX, Chen L, He YL, Tao WQ, Int. J. Heat Mass Transf., 63, 268 (2013)
Sukop MC, Thorne DT, Lattice Boltzmann modeling, An introduction for geoscientists and engineers, Springer, Heidelberg (2007)
Bhatnagar PL, Gross EP, Krook M, Phys. Rev., 94, 511 (1954)
Mohamad AA, Lattice Boltzmann method, fundamentals and engineering applications with computer codes, Springer, Heidelberg (2011)
Succi S, The lattice Boltzmann equation for fluid dynamics and beyond numerical mathematics and scientific computation, Clarendon Press, Oxford (2001)
Gunstensen AK, Rothman DH, Zaleski S, Zanetti G, Phys. Rev. A, 43, 4320 (1991)
Shan X, Chen H, Phys. Rev. E, 47, 1815 (1993)
Swift MR, Osborn WR, Yeomans JM, Phys. Rev. Lett., 75, 830 (1995)
Shan X, Doolen G, J. Stat. Phys., 81, 379 (1995)
Shan X, Chen H, Phys. Rev. E, 47, 3614 (1996)
Kamali MR, Sundaresan S, Van den Akker HEA, Gillissen JJJ, Chem. Eng. J., 207, 587 (2012)
VanSant JH, Conduction heat transfer solutions, Lawrence Livermore National Laboratory, California (1983)
Nguyen TV, J. Electrochem. Soc., 143, 103 (1996)
Zou Q, He X, Phys. Fluids, 9, 1591 (1997)
Li X, Principles of fuel cells, Taylor and Francis Group, New York (2006)
Parthasarathy A, Srinivasan S, Appleby AJ, Martin CR, J. Electrochem. Soc., 139, 2530 (1992)
Berning T, Lu DM, Djilali N, J. Power Sources, 106(1-2), 284 (2002)
He WS, Yi JS, Van Nguyen T, AIChE J., 46(10), 2053 (2000)
Larminie J, Dicks A, Fuel cell systems explained, Wiley, England (2003)
Wang Y, Chen KS, Mishler J, Cho SC, Adroher XC, Appl. Energy, 88(4), 981 (2011)
Khan MA, Sunden B, Yuan JL, J. Power Sources, 196(19), 7899 (2011)
Song GH, Meng H, Acta Mech. Sin., 29, 318 (2013)
Ostadi H, Rama P, Liu Y, Chen R, Zhang X, Jiang K, Microelectron. Eng., 87, 1640 (2010)
Ismail MS, Hughes KJ, Ingham DB, Ma L, Pourkashanian M, Appl. Energy, 95, 50 (2012)
Chen S, Doolen GD, Annu. Rev. Fluid Mech., 30, 329 (1998)
Joshi AS, Grew KN, Peracchio AA, Chiu WKS, J. Power Sources, 164(2), 631 (2007)
Park J, Matsubara M, Li X, J. Power Sources, 173(1), 404 (2007)
Delavar MA, Farhadi M, Sedighi K, Int. J. Hydrog. Energy, 35(17), 9306 (2010)
Niu XD, Munekata T, Hyodo SA, Suga K, J. Power Sources, 172(2), 542 (2007)
Park J, Li X, J. Power Sources, 178(1), 248 (2008)
Koido T, Furusawa T, Moriyama K, J. Power Sources, 175(1), 127 (2008)
Mukherjee PP, Wang CY, Kang QJ, Electrochim. Acta, 54(27), 6861 (2009)
Hao L, Cheng P, J. Power Sources, 186(1), 104 (2009)
Hao L, Cheng P, Int. J. Heat Mass Transf., 55(1-3), 133 (2012)
Hao L, Cheng P, J. Power Sources, 195(12), 3870 (2010)
Ben Salah Y, Tabe Y, Chikahisa T, J. Power Sources, 199, 85 (2012)
Han B, Yu J, Meng H, J. Power Sources, 202, 175 (2012)
Chen L, Luan HB, He YL, Tao WQ, Int. J. Therm. Sci., 5, 132 (2012)
Chen L, Luan HB, Feng YL, Song CX, He YL, Tao WQ, Int. J. Heat Mass Transf., 55(13-14), 3834 (2012)
Chen L, Feng YL, Song CX, Chen L, He YL, Tao WQ, Int. J. Heat Mass Transf., 63, 268 (2013)
Sukop MC, Thorne DT, Lattice Boltzmann modeling, An introduction for geoscientists and engineers, Springer, Heidelberg (2007)
Bhatnagar PL, Gross EP, Krook M, Phys. Rev., 94, 511 (1954)
Mohamad AA, Lattice Boltzmann method, fundamentals and engineering applications with computer codes, Springer, Heidelberg (2011)
Succi S, The lattice Boltzmann equation for fluid dynamics and beyond numerical mathematics and scientific computation, Clarendon Press, Oxford (2001)
Gunstensen AK, Rothman DH, Zaleski S, Zanetti G, Phys. Rev. A, 43, 4320 (1991)
Shan X, Chen H, Phys. Rev. E, 47, 1815 (1993)
Swift MR, Osborn WR, Yeomans JM, Phys. Rev. Lett., 75, 830 (1995)
Shan X, Doolen G, J. Stat. Phys., 81, 379 (1995)
Shan X, Chen H, Phys. Rev. E, 47, 3614 (1996)
Kamali MR, Sundaresan S, Van den Akker HEA, Gillissen JJJ, Chem. Eng. J., 207, 587 (2012)
VanSant JH, Conduction heat transfer solutions, Lawrence Livermore National Laboratory, California (1983)
Nguyen TV, J. Electrochem. Soc., 143, 103 (1996)
Zou Q, He X, Phys. Fluids, 9, 1591 (1997)
Li X, Principles of fuel cells, Taylor and Francis Group, New York (2006)
Parthasarathy A, Srinivasan S, Appleby AJ, Martin CR, J. Electrochem. Soc., 139, 2530 (1992)
Berning T, Lu DM, Djilali N, J. Power Sources, 106(1-2), 284 (2002)
He WS, Yi JS, Van Nguyen T, AIChE J., 46(10), 2053 (2000)