ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received April 14, 2014
Accepted August 13, 2014
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

The mechanism of higher alcohol formation on ZrO2-based catalyst from syngas

1State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China 2University of the Chinese Academy of Sciences, Beijing 100039, China 3Department of Applied Chemistry, University of Toyama, Toyama 930-8555, Japan
tan@sxicc.ac.cn
Korean Journal of Chemical Engineering, March 2015, 32(3), 406-412(7), 10.1007/s11814-014-0236-7
downloadDownload PDF

Abstract

A chain growth scheme for the synthesis of alcohols from carbon monoxide and hydrogen is proposed based on the chemical enrichment method on ZrO2-based catalyst. Methanol addition has no obvious effect on the STY of C2+ alcohols, indicating that COH→CCOH is a slow initial growth step. Addition of ethanol and propanols can enhance the STY of isobutanol, especially n-propanol, revealing that n-propanol is largely the precursor of isobutanol. Results of large alcohols addition further reveal the relationship between small alcohols and large alcohols of formation. Also, addition of aldehydes has a similar effect on the formation of higher alcohols, indicating that alcohols exist in the form of aldehydes before desorption. Anisole are introduced into syngas for confirmation of predicted intermediates and the result indicates that formyl species is participated both in the formation of methanol and higher alcohols. Reaction temperature has a significant effect on the chain growth of alcohols synthesis. Under low temperature, chain growth occurs with CO insertion and alcohols are linear products. Isobutanol appears and becomes the main product during C2+ alcohols undergo an aldo-condensation reaction at high temperature.

References

Zhang SH, Muratsugu S, Ishiguro N, Tada M, Catalysis, 3, 1855 (2013)
Sharma SD, McLennan K, Dolan M, Nguyen T, Chase D, Fuel, 108, 42 (2013)
Liu YY, Murata K, Inaba M, Takahara I, Okabe K, Fuel, 104, 62 (2013)
Gupta M, Smith ML, Spivey JJ, ACS Catal., 1, 641 (2011)
Yeon SH, Shin DH, Nho NS, Shin KH, Jin CS, Nam SC, Korean J. Chem. Eng., 30(4), 864 (2013)
Brat D, Weber C, Lorenzen W, Bode HB, Boles E, Biotechnology for Biofuels, 5, 65 (2012)
Slating TA, Kesan JP, Wisconsin Law Review, 1109 (2011)
Negishi R, Rev. The Physico-Chemical Society of Japan, 15, 171 (1941)
Stiles AB, AZChE J., 23, 362 (1977)
Stiles AB, Chen F, Harrison JB, Hu XD, Storm DA, Yang HX, Ind. Eng. Chem. Res., 30, 811 (1991)
Smith KJ, Anderson RB, Can. J. Chem. Eng., 61, 40 (1983)
Smith KJ, Anderson RBA, J. Catal, 85, 428 (1984)
Vedage GA, Himelfarb PB, Simmons GW, Klier K, Solid State Chemistry in Catalysis, 18, 295 (1985)
Mananec TJ, J. Catal., 99, 115 (1986)
Hilmen AM, Xu MT, Gines MJL, Iglesia E, Appl. Catal. A: Gen., 169(2), 355 (1998)
Artyukh YN, Lunev NK, Verkhgradskii OP, Zelenkov GA, Oeva LA, limovich EA, Theor. Exp. Chem., 26, 476 (1990)
Beretta A, Lietti L, Tronconi E, Forzatti P, Pasquon I, Ind. Eng. Chem. Res., 35(7), 2154 (1996)
An W, Niu YQ, Chen ZH, J. Fuel Chem. Technol., 22, 63 (1994)
Jiang T, Niu YQ, Zhong B, J. Fuel Chem. Technol., 28, 101 (2000)
He DP, Dissertation D, Dalian Institute of Chemical Physics, Chinse Academy of Sciences, Dalian (2004)
Wu YQ, Xie HJ, Kou YL, Tan L, Han YZ, Tan YS, J. Fuel Chem. Technol., 41, 869 (2013)
Morgan GT, Hardy DVN, J. Soc. Chem. Ind., 52, 518 (1933)
Dent AL, Kokes RJ, J. Phy. Chem., 73, 3781 (1969)
Kokes RJ, Accounts of Chemical Research, 6, 233 (1973)
Gonzalez-Navarrete P, Calatayud M, Andres J, Ruiperez F, Roca-Sanjuan D, J. Phys. Chem. A, 117(25), 5354 (2013)
Gay RR, Nodine MH, Henrich VE, Zeiger HJ, Solomon EI, J. ACS, 102, 6752 (1980)
Kung HH, Cataly. Rev., Sci. Eng., 22, 235 (1980)
Saussey J, Lavalley JC, Lamotte J, Rais T, J. Chem. Soc., Chem. Commun., 5, 278 (1982)
Spivey JJ, Egbebi A, Chem. Soc. Rev., 36, 1514 (2007)
Nunan JG, Bogdan CE, Klier K, Smith KJ, Young CW, Herman RG, J. Catal., 113, 410 (1988)
Subramani V, Gangwal SK, Energy Fuels, 22(2), 814 (2008)
Chaumette P, Courty P, Kiennemann A, Ernst B, Top. Catal., 2, 117 (1995)
Lavalley JC, Saussey J, Lamotte J, Rais T, J. Mol. Catal., 17, 289 (1982)
Kozma B, Wojnarovits I, Dekany I, Reac. Kinet. Catal. Lett., 59, 285 (1996)
Elliot DJ, Pennella FJ, J. Catal., 114, 90 (1988)
Li D, Yang C, Qi H, Zhang H, Li W, Sun Y, Zhong B, Catal. Commun., 5, 605 (2004)
Bao J, Sun Z, Fu Y, Bian G, Zhang Y, Tsubaki N, Top. Catal., 52, 789 (2009)
Tien-Thao N, Alamdari H, Zahedi-Niaki MH, Kaliaguine S, Appl. Catal. A: Gen., 311, 204 (2006)
Epling WS, Hoflund GB, Hart WM, Minahan DM, J. Catal., 169(2), 438 (1997)
Keim W, Falter W, Catal. Lett., 3, 59 (1989)
Fang KG, Li DB, Lin MG, Xiang ML, Wei W, Sun YH, Catal. Today, 147(2), 133 (2009)
Dorokhov VS, Ishutenko DI, Nikulshin PA, Eliseev OL, Rozhdestvenskaya NN, Kogan VM, Lapidus AL, Doklady Chemistry, 451, 191 (2013)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로