Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received January 14, 2014
Accepted August 26, 2014
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Removal of strontium ions from nuclear waste using synthesized MnO2-ZrO2 nano-composite by hydrothermal method in supercritical condition
Seyed Javad Ahmadi†
Neda Akbari
Zahra Shiri-Yekta
Mohammad Hossein Mashhadizadeh1
Morteza Hosseinpour
Nuclear Science and Technology Research Institute, P. O. Box 11365/8486, Tehran, Iran 1Faculty of Chemistry, Tarbiat Moallem University, Tehran, Iran
Korean Journal of Chemical Engineering, March 2015, 32(3), 478-485(8), 10.1007/s11814-014-0249-2
Download PDF
Abstract
This study focuses mainly on the synthesis of MnO2-ZrO2 nano-composite as a new inorganic adsorbent. Supercritical water was used as a preparation medium for particle deposited materials. MnO2-ZrO2 was prepared from metal nitrate solutions in supercritical region. The resulting sample was characterized by Fourier transform infrared (FTIR), X-ray fluorescence (XRF), X-ray powder diffraction (XRD), thermogravimetric analysis (TGA) and transmission_x000D_
electron microscope (TEM). Analyses of the TEM images show the possibility for crystallizing nano-sized particles. The synthesized adsorbent was then used for the removal of strontium(II) from the nuclear waste. Moreover, a number of factors such as aqueous phase pH, contact time and initial metal ions concentration in the adsorption process were investigated. Comparison of the adsorption efficiency of the MnO2-ZrO2 nano-particles with those of the non-nano particles shows a shift of uptake of the metal ions vs. pH curves towards lower pH values and a significant_x000D_
improvement in adsorption of strontium ions was observed by using the nano-adsorbent. The kinetic data corresponds well to the pseudo-second-order equation. The adsorption data for strontium(II) were well fitted by the Langmuir isotherm. The synthesized nano-composite also showed a strong affinity toward the removal of Y(III), Ni(II), Pb(II) and Co(II) from the nuclear radioactive waste.
References
Hua M, Zhang SJ, Pan BC, Zhang WM, Lv L, Zhang QX, J. Hazard. Mater., 211, 317 (2012)
Karthika C, Sekar M, I Res. J. Environ. Sci., 1, 34 (2012)
Rao CNR, Cheetham AK, J. Mater. Chem., 11, 2887 (2001)
Ahmad HB, Abbas Y, Hussain M, Akhtar N, Ansari TM, Zuber M, Zia KM, Arain SA, Korean J. Chem. Eng., 31(2), 284 (2014)
Esfahani AR, Hojati S, Azimi A, Alidokht L, Khataee A, Farzadian M, Korean J. Chem. Eng., 31(4), 630 (2014)
Adegoke HI, AmooAdekola F, Fatoki OS, Ximba BJ, Korean J. Chem. Eng., 31(1), 142 (2014)
Shiri-Yekta Z, Yaftian MR, Nilchi A, Korean J. Chem. Eng., 30(8), 1644 (2013)
Adschiri T, Kanazawa K, Arai K, J. Am. Ceram. Soc., 75, 1019 (1992)
Adschiri T, Kanazawa K, Arai K, J. Am. Ceram. Soc., 75, 2615 (1992)
Hakuta Y, Adschiri T, Suzuki T, Chida T, Seino K, Arai K, J. Am. Ceram. Soc., 81, 2461 (1998)
Hakuta Y, Adschiri T, Hirakoso H, Arai K, Fluid Phase Equilib., 158-160, 733 (1999)
Adschiri T, Hakuta Y, Arai K, Ind. Eng. Chem. Res., 39(12), 4901 (2000)
Kanamura K, Goto A, Ho RY, Umegaki T, Toyoshima K, Okada K, Hakuta Y, Adschiri T, Arai K, Electrochem. Solid State Lett., 3(6), 256 (2000)
Hakuta Y, Seino K, Ura H, Adschiri T, Takizawa H, Arai K, J. Mater. Chem., 9, 2671 (1999)
Cabanas A, Darr JA, Lester E, Poliakoff M, J. Chem. Commun., 11, 901 (2000)
Cabanas A, Darr JA, Lester E, Poliakoff M, J. Mater. Chem., 11, 561 (2001)
Ahmadi SJ, Akbari N, Shiri-Yekta Z, Mashhadizadeh MH, Pourmatin A, J. Radioanal. Nucl. Chem.
Moon JK, Kim KW, Jung CH, Shul YG, Lee EH, J. Radioanal. Nucl. Chem., 246, 299 (2000)
Nilchi A, Khanchi A, Atashi H, Bagheri A, Nematollahi L, J. Hazard. Mater., 137(3), 1271 (2006)
Khanchi AR, Yavari R, Pourazarsa SK, J. Radioanal. Nucl. Chem., 273, 141 (2007)
Nilchi A, Hadjmohammadi MR, Garmarodi SR, Saberi R, J. Hazard. Mater., 167(1-3), 531 (2009)
Ahmadi SJ, Sadjadi S, Hosseinpour M, J. Ultrason. Sonochem., 20, 408 (2013)
Outokesh M, Hosseinpour M, Ahmadi SJ, Mousavand T, Sadjadi S, Soltanian W, Ind. Eng. Chem. Res., 50(6), 3540 (2011)
Ali IM, El-Zahhar AA, Zakaria ES, J. Radioanal. Nucl. Chem., 264, 637 (2005)
El-Khouly SH, J. Radioanal. Nucl. Chem., 270, 391 (2006)
Metwally E, El-Zakla T, Ayoub RR, J. Nucl. Radiochem. Sci., 9, 1 (2008)
Davis M, Elsevier Publishing Co., Amsterdam, 318 (1963)
Mishra SP, Dubey SS, Tiwari D, J. Radioanal. Nucl. Chem., 261, 457 (2004)
Vesely V, Pekarek V, Talanta, 19, 219 (1972)
Inan S, Tel H, Altas Y, J. Radioanal. Nucl. Chem., 267, 615 (2006)
Peric J, Trgo M, Medvidovic NV, J. Water Res., 38, 1839 (2004)
Langmuir I, J. Am. Chem. Soc., 40, 1361 (1918)
Mohan D, Chander S, J. Colloid Interface Sci., 299, 57 (2006)
Freundlich H, Z. Phys. Chem., 57, 384 (1906)
Karthika C, Sekar M, I Res. J. Environ. Sci., 1, 34 (2012)
Rao CNR, Cheetham AK, J. Mater. Chem., 11, 2887 (2001)
Ahmad HB, Abbas Y, Hussain M, Akhtar N, Ansari TM, Zuber M, Zia KM, Arain SA, Korean J. Chem. Eng., 31(2), 284 (2014)
Esfahani AR, Hojati S, Azimi A, Alidokht L, Khataee A, Farzadian M, Korean J. Chem. Eng., 31(4), 630 (2014)
Adegoke HI, AmooAdekola F, Fatoki OS, Ximba BJ, Korean J. Chem. Eng., 31(1), 142 (2014)
Shiri-Yekta Z, Yaftian MR, Nilchi A, Korean J. Chem. Eng., 30(8), 1644 (2013)
Adschiri T, Kanazawa K, Arai K, J. Am. Ceram. Soc., 75, 1019 (1992)
Adschiri T, Kanazawa K, Arai K, J. Am. Ceram. Soc., 75, 2615 (1992)
Hakuta Y, Adschiri T, Suzuki T, Chida T, Seino K, Arai K, J. Am. Ceram. Soc., 81, 2461 (1998)
Hakuta Y, Adschiri T, Hirakoso H, Arai K, Fluid Phase Equilib., 158-160, 733 (1999)
Adschiri T, Hakuta Y, Arai K, Ind. Eng. Chem. Res., 39(12), 4901 (2000)
Kanamura K, Goto A, Ho RY, Umegaki T, Toyoshima K, Okada K, Hakuta Y, Adschiri T, Arai K, Electrochem. Solid State Lett., 3(6), 256 (2000)
Hakuta Y, Seino K, Ura H, Adschiri T, Takizawa H, Arai K, J. Mater. Chem., 9, 2671 (1999)
Cabanas A, Darr JA, Lester E, Poliakoff M, J. Chem. Commun., 11, 901 (2000)
Cabanas A, Darr JA, Lester E, Poliakoff M, J. Mater. Chem., 11, 561 (2001)
Ahmadi SJ, Akbari N, Shiri-Yekta Z, Mashhadizadeh MH, Pourmatin A, J. Radioanal. Nucl. Chem.
Moon JK, Kim KW, Jung CH, Shul YG, Lee EH, J. Radioanal. Nucl. Chem., 246, 299 (2000)
Nilchi A, Khanchi A, Atashi H, Bagheri A, Nematollahi L, J. Hazard. Mater., 137(3), 1271 (2006)
Khanchi AR, Yavari R, Pourazarsa SK, J. Radioanal. Nucl. Chem., 273, 141 (2007)
Nilchi A, Hadjmohammadi MR, Garmarodi SR, Saberi R, J. Hazard. Mater., 167(1-3), 531 (2009)
Ahmadi SJ, Sadjadi S, Hosseinpour M, J. Ultrason. Sonochem., 20, 408 (2013)
Outokesh M, Hosseinpour M, Ahmadi SJ, Mousavand T, Sadjadi S, Soltanian W, Ind. Eng. Chem. Res., 50(6), 3540 (2011)
Ali IM, El-Zahhar AA, Zakaria ES, J. Radioanal. Nucl. Chem., 264, 637 (2005)
El-Khouly SH, J. Radioanal. Nucl. Chem., 270, 391 (2006)
Metwally E, El-Zakla T, Ayoub RR, J. Nucl. Radiochem. Sci., 9, 1 (2008)
Davis M, Elsevier Publishing Co., Amsterdam, 318 (1963)
Mishra SP, Dubey SS, Tiwari D, J. Radioanal. Nucl. Chem., 261, 457 (2004)
Vesely V, Pekarek V, Talanta, 19, 219 (1972)
Inan S, Tel H, Altas Y, J. Radioanal. Nucl. Chem., 267, 615 (2006)
Peric J, Trgo M, Medvidovic NV, J. Water Res., 38, 1839 (2004)
Langmuir I, J. Am. Chem. Soc., 40, 1361 (1918)
Mohan D, Chander S, J. Colloid Interface Sci., 299, 57 (2006)
Freundlich H, Z. Phys. Chem., 57, 384 (1906)