Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received November 3, 2014
Accepted December 5, 2014
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
High-pressure solubility of carbon dioxide in pyrrolidinium-based ionic liquids: [bmpyr][dca] and [bmpyr][Tf2N]
Department of Chemical Engineering, Hannam University, 1646, Yuseong-daero, Yuseong-gu, Daejeon 305-811, Korea
bclee@hannam.kr
Korean Journal of Chemical Engineering, March 2015, 32(3), 521-533(13), 10.1007/s11814-014-0364-0
Download PDF
Abstract
Solubility data of carbon dioxide (CO2) in two pyrrolidinium-based ionic liquids: 1-butyl-1-methylpyrrolidinium dicyanamide ([bmpyr][dca]) and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([bmpyr] [Tf2N]) are presented at pressures up to about 30MPa and temperatures from 303.2 K to 343.2 K. The solubility was determined by measuring bubble or cloud point pressures of mixtures of CO2 and ionic liquid using a high-pressure equilibrium apparatus equipped with a variable-volume view cell. The CO2 solubility in the ionic liquid in terms of the mole fraction or the molality increased with the increase of the equilibrium pressure at a given temperature, but decreased with the increase of temperature at a given pressure. At a given temperature, the mole fraction of CO2 dissolved in the ionic liquid increased rapidly as pressure increased. CO2 solubility in the mole fraction almost reached saturation around 0.65 for [bmpyr][dca] and around 0.8 for [bmpyr][Tf2N], respectively. The experimental data for the CO2+ ionic liquid systems were correlated using the Peng-Robinson equation of state (PR-EoS). The mixing rules of the Wong-Sandler type rather than the classical mixing rules of the van der Waals type were coupled with the PR-EoS. The resulting modeling approach proved to be able to correlate the CO2 solubilities in aforementioned ionic liquids over the aforementioned range of temperature and pressure within 5% average deviations.
Keywords
References
Ramdin M, de Loos TW, Vlugt TJH, Ind. Eng. Chem. Res., 51(24), 8149 (2012)
Haszeldine RS, Science, 325, 1647 (2009)
Gough C, Int. J. Greenhouse Gas Control, 2, 155 (2008)
Rochelle GT, Science, 325, 1652 (2009)
Vaidya PD, Kenig EY, Chem. Eng. Technol., 30(11), 1467 (2007)
Zhao H, Chem. Eng. Commun., 193(12), 1660 (2006)
Bara JE, Carlisle TK, Gabriel CJ, Camper D, Finotello A, Gin DL, Noble RD, Ind. Eng. Chem. Res., 48(6), 2739 (2009)
Kedra-Krolik K, Fabrice M, Jaubert JN, Ind. Eng. Chem. Res., 50(4), 2296 (2011)
Anthony JL, Anderson JL, Maginn EJ, Brennecke JF, J. Phys. Chem. B, 109(13), 6366 (2005)
Muldoon MJ, Aki SNVK, Anderson JL, Dixon JK, Brennecke JF, J. Phys. Chem. B, 111(30), 9001 (2007)
Jacquemin J, Husson P, Majer V, Costa-Gomes MF, J. Solution Chem., 36, 967 (2007)
Shin EK, Lee BC, Lim JS, J. Supercrit. Fluids, 45(3), 282 (2008)
Shin EK, Lee BC, J. Chem. Eng. Data, 53(12), 2728 (2008)
Carvalho PJ, Alvarez VH, Marrucho IM, Aznar M, Coutinho JAP, J. Supercrit. Fluids, 50(2), 105 (2009)
Hasib-ur-Rahman M, Siaj M, Larachi F, Chem. Eng. Process., 49(4), 313 (2010)
Karadas F, Atilhan M, Aparicio S, Energy Fuels, 24, 5817 (2010)
Ren W, Sensenich B, Scurto AM, J. Chem. Thermodyn., 42(3), 305 (2010)
Revelli AL, Mutelet F, Jaubert JN, J. Phys. Chem. B, 114(40), 12908 (2010)
Song HN, Lee BC, Lim JS, J. Chem. Eng. Data, 55(2), 891 (2010)
Yim JH, Song HN, Lee BC, Lim JS, Fluid Phase Equilib., 308(1-2), 147 (2011)
Yim JH, Song HN, Yoo KP, Lim JS, J. Chem. Eng. Data, 56(4), 1197 (2011)
Jung JY, Lee BC, Anal. Sci. Technol., 24(6), 467 (2011)
Jung YH, Jung JY, Jin YR, Lee BC, Baek IH, Kim SH, J. Chem. Eng. Data, 57(12), 3321 (2012)
Nam SG, Lee BC, Korean J. Chem. Eng., 30(2), 474 (2013)
Mejia I, Stanley K, Canales R, Brennecke JF, J. Chem. Eng. Data, 58, 2642 (2013)
Lei ZG, Dai CN, Chen BH, Chem. Rev., 114(2), 1289 (2014)
Nam SK, Lee BC, Anal. Sci. Technol., 27(2), 79 (2014)
Ally MR, Braunstein J, Baltus RE, Dai S, DePaoli DW, Simonson JM, Ind. Eng. Chem. Res., 43(5), 1296 (2004)
Ji XY, Adidharma H, Fluid Phase Equilib., 293(2), 141 (2010)
Yazdizadeh M, Rahmani F, Forghani AA, Korean J. Chem. Eng., 28(1), 246 (2011)
Maia FM, Tsivintzelis I, Rodriguez O, Macedo EA, Kontogeorgis GM, Fluid Phase Equilib., 332, 128 (2012)
Chen YS, Mutelet F, Jaubert JN, J. Phys. Chem. B, 116(49), 14375 (2012)
Macias-Salinas R, Chavez-Velasco JA, Aquino-Olivos MA, de la Cruz JLM, Sanchez-Ochoa JC, Ind. Eng. Chem. Res., 52(22), 7593 (2013)
Vega LF, Vilaseca O, Llovell F, Andreu JS, Fluid Phase Equilib., 294(1-2), 15 (2010)
Guide to the Expression of Uncertainty in Measurement, International Organization of Standardization (ISO), Geneva, Switzerland (1995)
Lee JM, Lee BC, Lee SH, J. Chem. Eng. Data, 45, 851 (2000)
Prausnitz JM, Lichtenthaler RN, de Azevedo EG, Molecular Thermodynamics of Fluid-Phase Equilibria, 3rd Ed., Prentice-Hall, NJ, USA (1999)
Lazzus JA, Commun. Comput. Phys., 14(1), 107 (2013)
Orbay H, Sandler SI, Modeling Vapor-Liquid Equilibria. Cubic Equations of State and Their Mixing Rules, Cambridge University Press, UK (1998)
Wong DSH, Sandler SI, AIChE J., 38, 671 (1992)
Valderrama JO, Forero LA, Rojas RE, Ind. Eng. Chem. Res., 51(22), 7838 (2012)
Winnick J, Chemical Engineering Thermodynamics, Wiley, New York, NY, 451 (1997)
IMSL Math/Library: FORTRAN Subroutines for Mathematical Applications, Vol. 2, Visual Numerics, Inc. (1994)
Haszeldine RS, Science, 325, 1647 (2009)
Gough C, Int. J. Greenhouse Gas Control, 2, 155 (2008)
Rochelle GT, Science, 325, 1652 (2009)
Vaidya PD, Kenig EY, Chem. Eng. Technol., 30(11), 1467 (2007)
Zhao H, Chem. Eng. Commun., 193(12), 1660 (2006)
Bara JE, Carlisle TK, Gabriel CJ, Camper D, Finotello A, Gin DL, Noble RD, Ind. Eng. Chem. Res., 48(6), 2739 (2009)
Kedra-Krolik K, Fabrice M, Jaubert JN, Ind. Eng. Chem. Res., 50(4), 2296 (2011)
Anthony JL, Anderson JL, Maginn EJ, Brennecke JF, J. Phys. Chem. B, 109(13), 6366 (2005)
Muldoon MJ, Aki SNVK, Anderson JL, Dixon JK, Brennecke JF, J. Phys. Chem. B, 111(30), 9001 (2007)
Jacquemin J, Husson P, Majer V, Costa-Gomes MF, J. Solution Chem., 36, 967 (2007)
Shin EK, Lee BC, Lim JS, J. Supercrit. Fluids, 45(3), 282 (2008)
Shin EK, Lee BC, J. Chem. Eng. Data, 53(12), 2728 (2008)
Carvalho PJ, Alvarez VH, Marrucho IM, Aznar M, Coutinho JAP, J. Supercrit. Fluids, 50(2), 105 (2009)
Hasib-ur-Rahman M, Siaj M, Larachi F, Chem. Eng. Process., 49(4), 313 (2010)
Karadas F, Atilhan M, Aparicio S, Energy Fuels, 24, 5817 (2010)
Ren W, Sensenich B, Scurto AM, J. Chem. Thermodyn., 42(3), 305 (2010)
Revelli AL, Mutelet F, Jaubert JN, J. Phys. Chem. B, 114(40), 12908 (2010)
Song HN, Lee BC, Lim JS, J. Chem. Eng. Data, 55(2), 891 (2010)
Yim JH, Song HN, Lee BC, Lim JS, Fluid Phase Equilib., 308(1-2), 147 (2011)
Yim JH, Song HN, Yoo KP, Lim JS, J. Chem. Eng. Data, 56(4), 1197 (2011)
Jung JY, Lee BC, Anal. Sci. Technol., 24(6), 467 (2011)
Jung YH, Jung JY, Jin YR, Lee BC, Baek IH, Kim SH, J. Chem. Eng. Data, 57(12), 3321 (2012)
Nam SG, Lee BC, Korean J. Chem. Eng., 30(2), 474 (2013)
Mejia I, Stanley K, Canales R, Brennecke JF, J. Chem. Eng. Data, 58, 2642 (2013)
Lei ZG, Dai CN, Chen BH, Chem. Rev., 114(2), 1289 (2014)
Nam SK, Lee BC, Anal. Sci. Technol., 27(2), 79 (2014)
Ally MR, Braunstein J, Baltus RE, Dai S, DePaoli DW, Simonson JM, Ind. Eng. Chem. Res., 43(5), 1296 (2004)
Ji XY, Adidharma H, Fluid Phase Equilib., 293(2), 141 (2010)
Yazdizadeh M, Rahmani F, Forghani AA, Korean J. Chem. Eng., 28(1), 246 (2011)
Maia FM, Tsivintzelis I, Rodriguez O, Macedo EA, Kontogeorgis GM, Fluid Phase Equilib., 332, 128 (2012)
Chen YS, Mutelet F, Jaubert JN, J. Phys. Chem. B, 116(49), 14375 (2012)
Macias-Salinas R, Chavez-Velasco JA, Aquino-Olivos MA, de la Cruz JLM, Sanchez-Ochoa JC, Ind. Eng. Chem. Res., 52(22), 7593 (2013)
Vega LF, Vilaseca O, Llovell F, Andreu JS, Fluid Phase Equilib., 294(1-2), 15 (2010)
Guide to the Expression of Uncertainty in Measurement, International Organization of Standardization (ISO), Geneva, Switzerland (1995)
Lee JM, Lee BC, Lee SH, J. Chem. Eng. Data, 45, 851 (2000)
Prausnitz JM, Lichtenthaler RN, de Azevedo EG, Molecular Thermodynamics of Fluid-Phase Equilibria, 3rd Ed., Prentice-Hall, NJ, USA (1999)
Lazzus JA, Commun. Comput. Phys., 14(1), 107 (2013)
Orbay H, Sandler SI, Modeling Vapor-Liquid Equilibria. Cubic Equations of State and Their Mixing Rules, Cambridge University Press, UK (1998)
Wong DSH, Sandler SI, AIChE J., 38, 671 (1992)
Valderrama JO, Forero LA, Rojas RE, Ind. Eng. Chem. Res., 51(22), 7838 (2012)
Winnick J, Chemical Engineering Thermodynamics, Wiley, New York, NY, 451 (1997)
IMSL Math/Library: FORTRAN Subroutines for Mathematical Applications, Vol. 2, Visual Numerics, Inc. (1994)