ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2025 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received May 26, 2013
Accepted August 24, 2014
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Pressure drop and thermal performance of CuO/ethylene glycol (60%)-water (40%) nanofluid in car radiator

Chemical Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran
zeinali@ferdowsi.um.ac.ir
Korean Journal of Chemical Engineering, April 2015, 32(4), 609-616(8), 10.1007/s11814-014-0244-7
downloadDownload PDF

Abstract

We investigated the role of nanofluid in a special car radiator and the effect of its different volume concentrations on pressure drop and friction factor of fluid flow. A mixture of 60/40 ratio of ethylene glycol (EG) and distilled water was used as the host fluid and CuO nanoparticles were dispersed well to make stable nanofluids. The influence of nanofluid concentrations on pressure drop was evaluated in the radiator at three different inlet fluid temperatures (35, 44, 54 ℃). The results demonstrated that the presence of nanoparticles caused an increase in nanofluid pressure drop, which was intensified by increasing nanoparticle concentration as well as decreasing temperature of inlet fluid. A new empirical equation for prediction of nanofluid pressure drop through the radiator was developed as well. Also, with increasing the flow rate, the performance index increased and indicated that application of nanofluid in higher flow rate was affordable.

References

Choi SUS, ASME FED 231/MD, 66, 99 (1995)
Peyghambarzadeh SM, Hashemabadi SH, Hoseini SM, SeifiJamnani M, Int. Commun. Heat Mass, 38, 1283 (2011)
Hojjat M, Etemad SG, Bagheri R, Korean J. Chem. Eng., 27(5), 1391 (2010)
Heris SZ, Etemad SG, Esfahany MN, Int. Commun. Heat Mass, 33, 529 (2006)
Murshed SMS, Leong KC, Yang C, Nguyen N, Int. J. Nanoscience, 7, 325 (2008)
Kahani M, Heris SZ, Mousavi SM, J. Dispersion Sci. Technol., 34, 1704 (2013)
Meibodi ME, Sefti MV, Rashidi AM, Amrollahi A, Tabasi M, Kalal HS, Int. Commun. Heat Mass, 37, 319 (2010)
Hashemi SM, Akhavan-Behabadi MA, Int. Commun. Heat Mass., 39, 144 (2012)
Chun BH, Kang HU, Kim SH, Korean J. Chem. Eng., 25(5), 966 (2008)
Asadabadi MR, Abolghasemi H, Maragheh MG, Nasab PD, Korean J. Chem. Eng., 30(3), 733 (2013)
Nasiri M, Etemad SG, Bagheri R, Korean J. Chem. Eng., 28(12), 2230 (2011)
Kulkarni DP, Vajjha RS, Das DK, Oliva D, Appl. Therm. Eng., 25, 1774 (2008)
Leong KY, Saidur R, Kazi SN, Mamun AH, Appl. Therm. Eng., 30, 2685 (2010)
Teng TP, Hung YH, Jwo CS, Chen CC, Jeng LY, Particuology, 9, 486 (2011)
Das SK, Putra N, Roetzel W, Int. J. Heat Mass Transf., 46(5), 851 (2003)
Rao Y, Particuology, 8, 549 (2010)
Tseng WJ, Lin KC, Mater. Sci. Eng., 355, 186 (2003)
Rea U, McKrell T, Hu LW, Buongiorno J, Int. J. Heat Mass Transf., 52(7-8), 2042 (2009)
Mukesh Kumar PC, Kumar J, Suresh S, J. Mech. Sci. Technol., 27, 239 (2013)
Duangthongsuk W, Wongwises S, Int. J. Heat Mass Transf., 52(7-8), 2059 (2009)
Lee J, Mudawar I, Int. J. Heat Mass Transf., 50(3-4), 452 (2007)
Pantzali MN, Kanaris AG, Antoniadis KD, Mouza AA, Paras SV, Int. J. Heat Fluid Flow, 30, 691 (2009)
Boudouh M, Gualous HL, Labachelerie MD, Appl. Therm. Eng., 30, 2619 (2010)
Fotukian SM, Esfahany MN, Int. Commun. Heat Mass, 37, 214 (2010)
He YR, Jin Y, Chen HS, Ding YL, Cang DQ, Lu HL, Int. J. Heat Mass Transf., 50(11-12), 2272 (2007)
Ko GH, Heo K, Lee K, Kim DS, Kim C, Sohn Y, Choi M, Int. J. Heat Mass Transf., 50(23-24), 4749 (2007)
Sun TF, Teja AS, J. Chem. Eng. Data, 48(1), 198 (2003)
Pak BC, Cho YI, Exp. Heat Transf., 11(2), 151 (1998)
Drew DA, Passman SL, Theory of multi component fluids, Springer, Berlin (1999). (1999)
Sharma KV, Sundar LS, Sarma PK, Int. Commun. Heat Mass, 36, 503 (2009)
Xuan Y, Li Q, J. Heat Transf. -Trans. ASME, 125, 151 (2003)
Shokrgozar M, Heris SZ, Pourfarhang S, Shanbedi M, Noie SH, J. Dispersion Sci. Technol., 35, 677 (2014)
Brognaux LJ, Webb RL, Chamra LM, Chung BY, Int. J. Heat Mass Transf., 40(18), 4345 (1997)
Kahani M, Heris SZ, Mousavi SM, Powder Technol., 246, 82 (2013)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로