Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received March 28, 2014
Accepted October 5, 2014
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Extraction of copper from copper slag: Mineralogical insights, physical beneficiation and bioleaching studies
Sandeep Panda1 2†
Srabani Mishra1
Danda Srinivas Rao3
Nilotpala Pradhan1
Umaballava Mohapatra2
Shivakumar Angadi3
Barada Kanta Mishra1
1Department of Bioresources Engineering, CSIR-Institute of Minerals and Materials Technology (IMMT), Bhubaneswar-751013, Odisha, India 2North Orissa University (NOU), Baripada-757003, Odisha, India 3Department of Mineral Processing, CSIR-Institute of Minerals and Materials Technology (IMMT), Bhubaneswar-751013, Odisha, India
panda.sandeep84@gmail.com
Korean Journal of Chemical Engineering, April 2015, 32(4), 667-676(10), 10.1007/s11814-014-0298-6
Download PDF
Abstract
Copper slag was subjected to in-depth mineralogical characterization by integrated instrumental techniques and evaluated for the efficacy of physical beneficiation and mixed meso-acidophilic bioleaching tests towards recovery of copper. Point-to-point mineral chemistry of the copper slag is discussed in detail to give better insight into the association of copper in slag. Characterization studies of the representative sample revealed the presence of fayalite and magnetite along with metallic copper disseminated within the iron and silicate phases. Physical beneficiation of the_x000D_
feed slag (~0.6% Cu) in a 2 L working volume flotation cell using sodium isopropyl xanthate resulted in Cu beneficiation up to 2-4% and final recovery within 42-46%. On the other hand, a mixed meso-acidophilic bacterial consortium comprised of a group of iron and/or sulfur oxidizing bacteria resulted in enhanced recovery of Cu (~92-96%) from the slag sample. SEM characterization of the bioleached slag residue also showed massive coagulated texture with severe weathered structures. FE-SEM elemental mapping with EDS analysis indicated that the bioleached residues were devoid of copper.
References
Panda S, Sanjay K, Sukla LB, Pradhan N, Subbaiah T, Mishra BK, Prasad MSR, Ray SK, Hydrometallurgy, 125-126, 157 (2012)
Panda S, Sarangi CK, Pradhan N, Subbaiah T, Sukla LB, Mishra BK, Bhatoa GL, Prasad MSR, Ray SK, Korean J. Chem. Eng., 26, 781 (2012)
Shi S, Resour. Conserv. Recycl., 52, 1115 (2008)
Liu X, Zhang N, Waste Manage. Res., 29, 1053 (2011)
Gorai B, Jana RK, Premchand, Resour. Conserv. Recycl., 39, 299 (2003)
Anand S, Rao PK, Jena PK, Hydrometallurgy, 5, 355 (1980)
Banza AN, Gock E, Kongolo E, Hydrometallurgy, 67, 63 (2003)
Bruckard WJ, Somerville M, Hao F, Miner. Eng., 17(4), 495 (2004)
Deng T, Ling Y, Waste Manage. Res., 25, 440 (2007)
Altundogan HS, Boyrazli M, Tumen F, Miner. Eng., 17(3), 465 (2004)
Arslan C, Arslan F, Hydrometallurgy, 67, 1 (2002)
Esther J, Panda S, Behera SK, Sukla LB, Pradhan N, Mishra BK, Bioresour. Technol., 146, 762 (2013)
Panda S, Parhi PK, Nayak BD, Pradhan N, Mohapatra UB, Sukla LB, Bioresour. Technol., 130, 332 (2013)
Ilyas S, Lee JC, Chi R, Hydrometallurgy, 131-132, 138 (2013)
Yang T, Xu Z, Wen J, Yang L, Hydrometallurgy, 97, 29 (2009)
Krebs W, Bachofen R, Brandl H, Hydrometallurgy, 59, 283 (2001)
Wang QH, Yang J, Wang Q, Wu TJ, J. Hazard. Mater., 162(2-3), 812 (2009)
Qu Y, Lian B, Mo B, Liu C, Hydrometallurgy, 136, 71 (2013)
Rudnik E, Nikiel M, Hydrometallurgy, 89, 61 (2007)
Mishra S, Panda PP, Pradhan N, Satapathy D, Subudhi U, Biswal SK, Mishra BK, Fuel, 117, 415 (2014)
Kumar RN, Nagendran R, J. Hazard. Mater., 169(1-3), 1119 (2009)
Panda S, Parhi PK, Pradhan N, Mohapatra UB, Sukla LB, Park KH, Hydrometallurgy, 121-124, 116 (2012)
Panda S, Rout PC, Sarangi CK, Mishra S, Pradhan N, Mohapatra U, Subbaiah T, Sukla LB, Mishra BK, Korean J. Chem. Eng., 31(3), 452 (2014)
Das B, Prakash S, Angadi SK, Reddy PSR, Mishra BK, Report No. T/MP/647/March/2008, IMMT, Bhubaneswar, an Internal Report. (2008)
Fu B, Zhou H, Zhang R, Qiu G, Int. Biodeter. Biodegrad., 62, 109 (2008)
Silverman MP, Lundgren DG, J. Bacteriol., 77, 642 (1959)
Panda S, Pradhan N, Mohapatra UB, Panda SK, Rath SS, Nayak BD, Rao DS, Sukla LB, Mishra BK, Front. Env. Sci. Eng., 7, 281 (2013)
Sand W, Gehrke T, Jozsa PG, Schippers A, Hydrometallurgy, 59, 159 (2001)
Tributsch H, Hydrometallurgy, 59, 177 (2001)
Carranza F, Romero R, Mazuelos A, Iglesias N, Forcat O, Hydrometallurgy, 97, 39 (2009)
Zhao HB, Wang J, Hu MH, Qin WQ, Zhang YS, Qiu GZ, Bioresour. Technol., 149, 71 (2013)
Vestola EA, Kuusenaho MK, Narhi HM, Tuovinen OH, Puhakka JA, Kaksonen JJAH, Hydrometallurgy, 103, 74 (2009)
Panda S, Sarangi CK, Pradhan N, Subbaiah T, Sukla LB, Mishra BK, Bhatoa GL, Prasad MSR, Ray SK, Korean J. Chem. Eng., 26, 781 (2012)
Shi S, Resour. Conserv. Recycl., 52, 1115 (2008)
Liu X, Zhang N, Waste Manage. Res., 29, 1053 (2011)
Gorai B, Jana RK, Premchand, Resour. Conserv. Recycl., 39, 299 (2003)
Anand S, Rao PK, Jena PK, Hydrometallurgy, 5, 355 (1980)
Banza AN, Gock E, Kongolo E, Hydrometallurgy, 67, 63 (2003)
Bruckard WJ, Somerville M, Hao F, Miner. Eng., 17(4), 495 (2004)
Deng T, Ling Y, Waste Manage. Res., 25, 440 (2007)
Altundogan HS, Boyrazli M, Tumen F, Miner. Eng., 17(3), 465 (2004)
Arslan C, Arslan F, Hydrometallurgy, 67, 1 (2002)
Esther J, Panda S, Behera SK, Sukla LB, Pradhan N, Mishra BK, Bioresour. Technol., 146, 762 (2013)
Panda S, Parhi PK, Nayak BD, Pradhan N, Mohapatra UB, Sukla LB, Bioresour. Technol., 130, 332 (2013)
Ilyas S, Lee JC, Chi R, Hydrometallurgy, 131-132, 138 (2013)
Yang T, Xu Z, Wen J, Yang L, Hydrometallurgy, 97, 29 (2009)
Krebs W, Bachofen R, Brandl H, Hydrometallurgy, 59, 283 (2001)
Wang QH, Yang J, Wang Q, Wu TJ, J. Hazard. Mater., 162(2-3), 812 (2009)
Qu Y, Lian B, Mo B, Liu C, Hydrometallurgy, 136, 71 (2013)
Rudnik E, Nikiel M, Hydrometallurgy, 89, 61 (2007)
Mishra S, Panda PP, Pradhan N, Satapathy D, Subudhi U, Biswal SK, Mishra BK, Fuel, 117, 415 (2014)
Kumar RN, Nagendran R, J. Hazard. Mater., 169(1-3), 1119 (2009)
Panda S, Parhi PK, Pradhan N, Mohapatra UB, Sukla LB, Park KH, Hydrometallurgy, 121-124, 116 (2012)
Panda S, Rout PC, Sarangi CK, Mishra S, Pradhan N, Mohapatra U, Subbaiah T, Sukla LB, Mishra BK, Korean J. Chem. Eng., 31(3), 452 (2014)
Das B, Prakash S, Angadi SK, Reddy PSR, Mishra BK, Report No. T/MP/647/March/2008, IMMT, Bhubaneswar, an Internal Report. (2008)
Fu B, Zhou H, Zhang R, Qiu G, Int. Biodeter. Biodegrad., 62, 109 (2008)
Silverman MP, Lundgren DG, J. Bacteriol., 77, 642 (1959)
Panda S, Pradhan N, Mohapatra UB, Panda SK, Rath SS, Nayak BD, Rao DS, Sukla LB, Mishra BK, Front. Env. Sci. Eng., 7, 281 (2013)
Sand W, Gehrke T, Jozsa PG, Schippers A, Hydrometallurgy, 59, 159 (2001)
Tributsch H, Hydrometallurgy, 59, 177 (2001)
Carranza F, Romero R, Mazuelos A, Iglesias N, Forcat O, Hydrometallurgy, 97, 39 (2009)
Zhao HB, Wang J, Hu MH, Qin WQ, Zhang YS, Qiu GZ, Bioresour. Technol., 149, 71 (2013)
Vestola EA, Kuusenaho MK, Narhi HM, Tuovinen OH, Puhakka JA, Kaksonen JJAH, Hydrometallurgy, 103, 74 (2009)