ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received March 28, 2014
Accepted October 5, 2014
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Extraction of copper from copper slag: Mineralogical insights, physical beneficiation and bioleaching studies

1Department of Bioresources Engineering, CSIR-Institute of Minerals and Materials Technology (IMMT), Bhubaneswar-751013, Odisha, India 2North Orissa University (NOU), Baripada-757003, Odisha, India 3Department of Mineral Processing, CSIR-Institute of Minerals and Materials Technology (IMMT), Bhubaneswar-751013, Odisha, India
panda.sandeep84@gmail.com
Korean Journal of Chemical Engineering, April 2015, 32(4), 667-676(10), 10.1007/s11814-014-0298-6
downloadDownload PDF

Abstract

Copper slag was subjected to in-depth mineralogical characterization by integrated instrumental techniques and evaluated for the efficacy of physical beneficiation and mixed meso-acidophilic bioleaching tests towards recovery of copper. Point-to-point mineral chemistry of the copper slag is discussed in detail to give better insight into the association of copper in slag. Characterization studies of the representative sample revealed the presence of fayalite and magnetite along with metallic copper disseminated within the iron and silicate phases. Physical beneficiation of the_x000D_ feed slag (~0.6% Cu) in a 2 L working volume flotation cell using sodium isopropyl xanthate resulted in Cu beneficiation up to 2-4% and final recovery within 42-46%. On the other hand, a mixed meso-acidophilic bacterial consortium comprised of a group of iron and/or sulfur oxidizing bacteria resulted in enhanced recovery of Cu (~92-96%) from the slag sample. SEM characterization of the bioleached slag residue also showed massive coagulated texture with severe weathered structures. FE-SEM elemental mapping with EDS analysis indicated that the bioleached residues were devoid of copper.

References

Panda S, Sanjay K, Sukla LB, Pradhan N, Subbaiah T, Mishra BK, Prasad MSR, Ray SK, Hydrometallurgy, 125-126, 157 (2012)
Panda S, Sarangi CK, Pradhan N, Subbaiah T, Sukla LB, Mishra BK, Bhatoa GL, Prasad MSR, Ray SK, Korean J. Chem. Eng., 26, 781 (2012)
Shi S, Resour. Conserv. Recycl., 52, 1115 (2008)
Liu X, Zhang N, Waste Manage. Res., 29, 1053 (2011)
Gorai B, Jana RK, Premchand, Resour. Conserv. Recycl., 39, 299 (2003)
Anand S, Rao PK, Jena PK, Hydrometallurgy, 5, 355 (1980)
Banza AN, Gock E, Kongolo E, Hydrometallurgy, 67, 63 (2003)
Bruckard WJ, Somerville M, Hao F, Miner. Eng., 17(4), 495 (2004)
Deng T, Ling Y, Waste Manage. Res., 25, 440 (2007)
Altundogan HS, Boyrazli M, Tumen F, Miner. Eng., 17(3), 465 (2004)
Arslan C, Arslan F, Hydrometallurgy, 67, 1 (2002)
Esther J, Panda S, Behera SK, Sukla LB, Pradhan N, Mishra BK, Bioresour. Technol., 146, 762 (2013)
Panda S, Parhi PK, Nayak BD, Pradhan N, Mohapatra UB, Sukla LB, Bioresour. Technol., 130, 332 (2013)
Ilyas S, Lee JC, Chi R, Hydrometallurgy, 131-132, 138 (2013)
Yang T, Xu Z, Wen J, Yang L, Hydrometallurgy, 97, 29 (2009)
Krebs W, Bachofen R, Brandl H, Hydrometallurgy, 59, 283 (2001)
Wang QH, Yang J, Wang Q, Wu TJ, J. Hazard. Mater., 162(2-3), 812 (2009)
Qu Y, Lian B, Mo B, Liu C, Hydrometallurgy, 136, 71 (2013)
Rudnik E, Nikiel M, Hydrometallurgy, 89, 61 (2007)
Mishra S, Panda PP, Pradhan N, Satapathy D, Subudhi U, Biswal SK, Mishra BK, Fuel, 117, 415 (2014)
Kumar RN, Nagendran R, J. Hazard. Mater., 169(1-3), 1119 (2009)
Panda S, Parhi PK, Pradhan N, Mohapatra UB, Sukla LB, Park KH, Hydrometallurgy, 121-124, 116 (2012)
Panda S, Rout PC, Sarangi CK, Mishra S, Pradhan N, Mohapatra U, Subbaiah T, Sukla LB, Mishra BK, Korean J. Chem. Eng., 31(3), 452 (2014)
Das B, Prakash S, Angadi SK, Reddy PSR, Mishra BK, Report No. T/MP/647/March/2008, IMMT, Bhubaneswar, an Internal Report. (2008)
Fu B, Zhou H, Zhang R, Qiu G, Int. Biodeter. Biodegrad., 62, 109 (2008)
Silverman MP, Lundgren DG, J. Bacteriol., 77, 642 (1959)
Panda S, Pradhan N, Mohapatra UB, Panda SK, Rath SS, Nayak BD, Rao DS, Sukla LB, Mishra BK, Front. Env. Sci. Eng., 7, 281 (2013)
Sand W, Gehrke T, Jozsa PG, Schippers A, Hydrometallurgy, 59, 159 (2001)
Tributsch H, Hydrometallurgy, 59, 177 (2001)
Carranza F, Romero R, Mazuelos A, Iglesias N, Forcat O, Hydrometallurgy, 97, 39 (2009)
Zhao HB, Wang J, Hu MH, Qin WQ, Zhang YS, Qiu GZ, Bioresour. Technol., 149, 71 (2013)
Vestola EA, Kuusenaho MK, Narhi HM, Tuovinen OH, Puhakka JA, Kaksonen JJAH, Hydrometallurgy, 103, 74 (2009)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로