Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received May 23, 2014
Accepted September 27, 2014
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Microscopical characterizations of nanofiltration membranes for the removal of nickel ions from aqueous solution
Oluranti Agboola†
Jannie Maree1
Richard Mbaya
Andrei Kolesnikov
Rotimi Sadiku
Arne Verliefde2
Arnout D’Haese2
Department of Chemical, Metallurgical and Material Engineering, Faculty of Engineering and the Built Environment, Tshwane University of Technology, Pretoria 0001, South Africa 1Department of Environmental Science and Water Care, Faculty of Science, Tshwane University of Technology, Pretoria 0001, South Africa, Korea 2Particle and Interfacial Technology Group, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
sadikuo@tut.ac.za, funmi2406@gmail.com
Korean Journal of Chemical Engineering, April 2015, 32(4), 731-742(12), 10.1007/s11814-014-0290-1
Download PDF
Abstract
The nanofiltration (NF) process is electrostatically governed and the surface free energy plays a key role in the separation of particulates, macromolecules, and dissolved ionic species. Streaming potential measurement and the surface charge mapping by Kelvin probe atomic force mircoscopy (AFM) have been carried out. Forces of interaction near the surface of nanofiltration membranes were further studied by a force spectroscopy using atomic force microscopy. The two membranes used are more negatively charged at high pH values; hence the higher the solution chemistry, the higher and faster will be adhesion of ions on the surface of the nanofiltration membranes. It was observed that the three acquired signals from non-contact AFM (contact potential difference, amplitude and phase) were rigorously connected to the surface structure of the nanofiltration membranes. In addition to the surface structure (roughness),_x000D_
electrostatic interactions can also enhance initial particle adhesion to surfaces of nanofiltration membranes. The performance of the NF membranes was further investigated for the removal of nickel ions from aqueous solution, and the results were correlated to the mechanical responses of the nanofiltration membranes obtained from AFM and the streaming potential measurement.
Keywords
References
Bowen RW, Doneva TA, Stoton AG, Colloids Surf. A: Physicochem. Eng. Asp., 201, 73 (2002)
Serrano PT, Yiacoumi S, Tsouris C, J. Chem. Phys., 125, 1 (2006)
Huisman IH, Tragardh G, Tragardh C, Pihlajamaki A, J. Membr. Sci., 147(2), 187 (1998)
Childress AE, Elimelech M, Environ. Sci. Technol., 34, 3710 (2000)
Ariza MJ, Benavente J, J. Membr. Sci., 190(1), 119 (2001)
Buksek H, Luxbacher T, Petrinic I, Acta Chim. Slovenica, 57, 700 (2010)
Tiraferri A, Elimelech M, J. Membr. Sci., 389, 499 (2012)
Shim Y, Lee HJ, Lee S, Moon SH, Cho J, Environ. Sci. Technol., 36, 3864 (2002)
Childress AE, Elimelech M, J. Membr. Sci., 119(2), 253 (1996)
Brant JA, Childress AE, J. Membr. Sci., 203(1-2), 257 (2002)
Kaminski S, Mroginski MA, J. Phys. Chem. B, 114(50), 16677 (2010)
Wang L, Molecular dynamics simulations of liquid transport through nanofiltration membranes, Doctoral dissertation, McMaster University, Ontario, Canada (2012). (2012)
Renou R, Ghoufi A, Szymczyk A, Zhu H, Neyt JC, Malfreyt P, J. Phys. Chem. C, 117, 11017 (2013)
Vrijenhoek EM, Hong S, Elimelech M, J. Membr. Sci., 118, 115 (2001)
Song W, Ravindran V, Koel BE, Pirbazari M, J. Membr. Sci., 241(1), 143 (2004)
Freger V, Langmuir, 19(11), 4791 (2003)
Brant JA, Johnson KM, Childress AE, J. Membr. Sci., 276(1-2), 286 (2006)
Akbari A, Homayoonfal M, Jabbari V, Water Sci. Technol., 64, 2404 (2011)
Dipankar N, Lun TK, Chung HC, Jung CC, Chyu RR, Che CY, Shen CC, Hwa WT, Desalination, 234, 344 (2008)
Schafer AI, Pihlajamaki A, Fane AG, Waite TD, Nystrom M, J. Membr. Sci., 242(1-2), 73 (2004)
Dahmani B, Chabene M, J. Chem. Eng. Process Technol, 2, 103 (2011)
Choo KH, Kwon DJ, Lee KW, Choi SJ, Environ. Sci. Technol., 36, 1330 (2002)
Ji Z, Dong H, Liu M, Hu W, Nano Res., 2, 857 (2009)
Rezek B, Ukraintsev E, Kromka A, Nanoscale Res. Lett., 6, 337 (2011)
Dianoux R, Martin F, Marchi F, Alandi C, Comin F, J. Chevrier, Phys. Rev. B, 68, 454031 (2003)
Boyer L, Houze F, Tonck A, Loubet JL, Georges JM, J. Phys. D-Appl. Phys., 27, 1504 (1994)
Hao HW, Baro AM, Saenz JJ, J. Vac. Sci. Technol. B, 9, 1323 (1991)
Agboola O, Maree J, Mbaya R, Zvinowanda CM, Molelekwa GF, Jullok N, Van der Bruggen B, Volodine A, Haesendonck CV, Korean J. Chem. Eng., 31(8), 1413 (2014)
Kim J, Van der Bruggen B, Environ. Pollut., 158, 2225 (2010)
Pendergast MM, Hoek EMV, Energy Environ. Sci., 4, 1946 (2011)
Crock CA, Rogensues AR, Shan W, Tarabara VV, Water Res., 47, 3984 (2013)
Horcas I, Fernandez R, Rodriguez JMG, Colchero J, Herrero JG, Baro AM, Rev. Sci. Instrum., 78, 013705 (2007)
Cappella B, Dietler G, Surf. Sci. Rep., 34, 1 (1999)
Fontaine P, Guenoun P, Daillant JA, Rev. Sci. Instrum., 68, 4145 (1997)
Frederix PLTM, Bosshart PD, Engel A, Biophys. J., 96, 329 (2009)
Welker J, IIIek E, Giessibi FJ, Beilstein J. Nanotechnol., 3, 238 (2012)
Hoogenboom BW, Hug HJ, Pellmont Y, Martin S, Frederix PLTM, Appl. Phys. Lett., 88, 103109 (2006)
Fukuma T, Kobayashi K, Matsushige K, Yamada H, Appl. Phys. Lett., 88, 193109 (2005)
Bowen WR, Mohammad AW, Chem. Eng. Res. Des., 76(8), 885 (1998)
Elimelech M, Chen WH, Waypa JJ, Desalination, 95, 269 (1994)
Bowen WR, Hilal N, Lovitt RW, Wright CJ, J. Membr. Sci., 139(2), 269 (1998)
Brant JA, Johnson KM, Childress AE, Colloids Surf. A: Physicochem. Eng. Asp., 280, 45 (2006)
Sidek NM, Ali N, Fauzi SAA, The governing factors of nanofiltration membranes separation process performance: A review, Empowering Science, Technology and Innovation Towards Better Tomorrow, EP33, UMTAS (2011). (2011)
Berg P, Hagmeyer G, Gimbel R, Desalination, 113(2-3), 205 (1997)
Serrano PT, Yiacoumi S, Tsouris C, J. Chem. Phys., 125, 1 (2006)
Huisman IH, Tragardh G, Tragardh C, Pihlajamaki A, J. Membr. Sci., 147(2), 187 (1998)
Childress AE, Elimelech M, Environ. Sci. Technol., 34, 3710 (2000)
Ariza MJ, Benavente J, J. Membr. Sci., 190(1), 119 (2001)
Buksek H, Luxbacher T, Petrinic I, Acta Chim. Slovenica, 57, 700 (2010)
Tiraferri A, Elimelech M, J. Membr. Sci., 389, 499 (2012)
Shim Y, Lee HJ, Lee S, Moon SH, Cho J, Environ. Sci. Technol., 36, 3864 (2002)
Childress AE, Elimelech M, J. Membr. Sci., 119(2), 253 (1996)
Brant JA, Childress AE, J. Membr. Sci., 203(1-2), 257 (2002)
Kaminski S, Mroginski MA, J. Phys. Chem. B, 114(50), 16677 (2010)
Wang L, Molecular dynamics simulations of liquid transport through nanofiltration membranes, Doctoral dissertation, McMaster University, Ontario, Canada (2012). (2012)
Renou R, Ghoufi A, Szymczyk A, Zhu H, Neyt JC, Malfreyt P, J. Phys. Chem. C, 117, 11017 (2013)
Vrijenhoek EM, Hong S, Elimelech M, J. Membr. Sci., 118, 115 (2001)
Song W, Ravindran V, Koel BE, Pirbazari M, J. Membr. Sci., 241(1), 143 (2004)
Freger V, Langmuir, 19(11), 4791 (2003)
Brant JA, Johnson KM, Childress AE, J. Membr. Sci., 276(1-2), 286 (2006)
Akbari A, Homayoonfal M, Jabbari V, Water Sci. Technol., 64, 2404 (2011)
Dipankar N, Lun TK, Chung HC, Jung CC, Chyu RR, Che CY, Shen CC, Hwa WT, Desalination, 234, 344 (2008)
Schafer AI, Pihlajamaki A, Fane AG, Waite TD, Nystrom M, J. Membr. Sci., 242(1-2), 73 (2004)
Dahmani B, Chabene M, J. Chem. Eng. Process Technol, 2, 103 (2011)
Choo KH, Kwon DJ, Lee KW, Choi SJ, Environ. Sci. Technol., 36, 1330 (2002)
Ji Z, Dong H, Liu M, Hu W, Nano Res., 2, 857 (2009)
Rezek B, Ukraintsev E, Kromka A, Nanoscale Res. Lett., 6, 337 (2011)
Dianoux R, Martin F, Marchi F, Alandi C, Comin F, J. Chevrier, Phys. Rev. B, 68, 454031 (2003)
Boyer L, Houze F, Tonck A, Loubet JL, Georges JM, J. Phys. D-Appl. Phys., 27, 1504 (1994)
Hao HW, Baro AM, Saenz JJ, J. Vac. Sci. Technol. B, 9, 1323 (1991)
Agboola O, Maree J, Mbaya R, Zvinowanda CM, Molelekwa GF, Jullok N, Van der Bruggen B, Volodine A, Haesendonck CV, Korean J. Chem. Eng., 31(8), 1413 (2014)
Kim J, Van der Bruggen B, Environ. Pollut., 158, 2225 (2010)
Pendergast MM, Hoek EMV, Energy Environ. Sci., 4, 1946 (2011)
Crock CA, Rogensues AR, Shan W, Tarabara VV, Water Res., 47, 3984 (2013)
Horcas I, Fernandez R, Rodriguez JMG, Colchero J, Herrero JG, Baro AM, Rev. Sci. Instrum., 78, 013705 (2007)
Cappella B, Dietler G, Surf. Sci. Rep., 34, 1 (1999)
Fontaine P, Guenoun P, Daillant JA, Rev. Sci. Instrum., 68, 4145 (1997)
Frederix PLTM, Bosshart PD, Engel A, Biophys. J., 96, 329 (2009)
Welker J, IIIek E, Giessibi FJ, Beilstein J. Nanotechnol., 3, 238 (2012)
Hoogenboom BW, Hug HJ, Pellmont Y, Martin S, Frederix PLTM, Appl. Phys. Lett., 88, 103109 (2006)
Fukuma T, Kobayashi K, Matsushige K, Yamada H, Appl. Phys. Lett., 88, 193109 (2005)
Bowen WR, Mohammad AW, Chem. Eng. Res. Des., 76(8), 885 (1998)
Elimelech M, Chen WH, Waypa JJ, Desalination, 95, 269 (1994)
Bowen WR, Hilal N, Lovitt RW, Wright CJ, J. Membr. Sci., 139(2), 269 (1998)
Brant JA, Johnson KM, Childress AE, Colloids Surf. A: Physicochem. Eng. Asp., 280, 45 (2006)
Sidek NM, Ali N, Fauzi SAA, The governing factors of nanofiltration membranes separation process performance: A review, Empowering Science, Technology and Innovation Towards Better Tomorrow, EP33, UMTAS (2011). (2011)
Berg P, Hagmeyer G, Gimbel R, Desalination, 113(2-3), 205 (1997)