ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2025 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received June 16, 2014
Accepted September 1, 2014
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Study on the thin film composite poly(piperazine-amide) nanofiltration membranes made of different polymeric substrates: Effect of operating conditions

1Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia 2Faculty of Petroleum and Renewable Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia 3Department of Chemical and Biological Engineering, Industrial Membrane Research Institute, University of Ottawa, 161 Louis Pasteur St., Ottawa, ON KIN 6N5, Canada
Korean Journal of Chemical Engineering, April 2015, 32(4), 753-760(8), 10.1007/s11814-014-0261-6
downloadDownload PDF

Abstract

Three composite nanofiltration (NF) membranes made of different substrate materials--polysulfone (PSf), polyethersulfone (PES) and polyetherimide (PEI)--were successfully prepared by interfacial polymerization technique. Prior to filtration tests, the composite NF membranes were characterized using field emission scanning electron microscope (FESEM), atomic force microscope (AFM) and X-ray photoelectron spectroscope (XPS). It was observed that the_x000D_ surface properties of composite NF membranes were obviously altered with the use of different substrate materials. The separation performance of the prepared composite NF membranes was further evaluated by varying operating conditions, which included feed salt concentration and operating temperature. Experimental results showed that the water flux of all TFC membranes tended to decrease with increasing Na2SO4 concentration in feed solution, due to the increase_x000D_ in feed osmotic pressure. Of the three TFC membranes studied, PSf-based membrane demonstrated the highest salt rejection but lowest water flux owing to its highest degree of polyamide cross-linking as shown in XPS data. With respect to thermal stability, PEI-based TFC membrane outperformed the rest, overcoming the trade-off effect between permeability and rejection when the feed solution temperature was gradually increased from 30 oC to 80 oC. In addition, the relatively smoother surface of hydrophilic PEI-based membrane when compared with PSf-based membrane was found to be less susceptible to BSA foulants, leading to lower flux decline. This is because smoother surface of polyamide layer would have minimum “valley clogging,” which improves membrane anti-fouling resistance.

References

Chen SH, Chang DJ, Liou MR, Hsu CS, Lin SS, J. Appl. Polym. Sci., 83(5), 1112 (2002)
Lau WJ, Ismail AF, Goh PS, Hilal N, Ooi BS, Sep. Purif. Rev., DOI:10.1080/15422119.2014.882355 (2014)
Eriksson P, Environ. Prog., 7, 58 (1988)
Liu FN, Zhang GL, Meng Q, Zhang HZ, Chin. J. Chem. Eng., 16(3), 441 (2008)
Rahimpour A, Jahanshahi M, Mortazavian N, Madaeni SS, Mansourpanah Y, Appl. Surf. Sci., 256(6), 1657 (2010)
Hu D, Xu ZL, Chen C, Desalination, 301, 75 (2012)
Ahmad AL, Ooi BS, Mohammad AW, Choudhury JP, J. Appl. Polym. Sci., 94(1), 394 (2004)
Jegal J, Min SG, Lee KH, J. Appl. Polym. Sci., 86(11), 2781 (2002)
Namvar-Mahboub M, Pakizeh M, Korean J. Chem. Eng., 31(2), 327 (2014)
Lau WJ, Ismail AF, Misdan N, Kassim MA, Desalination, 287, 190 (2012)
Hu LJ, Zhang SH, Han RL, Jian XG, Appl. Surf. Sci., 258(22), 9047 (2012)
Misdan N, Lau WJ, Ismail AF, Desalination, 287, 228 (2012)
Li D, Wang H, J. Mater. Chem., 20, 4551 (2010)
Wei J, Jian XG, Wu CR, Zhang SH, Yan C, J. Membr. Sci., 256(1-2), 116 (2005)
Kim ES, Kim YJ, Yu QS, Deng BL, J. Membr. Sci., 344(1-2), 71 (2009)
Il Kim H, Kim SS, J. Membr. Sci., 286(1-2), 193 (2006)
Verissimo S, Peinemann KV, Bordado J, J. Membr. Sci., 279(1-2), 266 (2006)
Namvar-Mahboub M, Pakizeh M, Sep. Purif. Technol., 119, 35 (2013)
Wu CR, Zhang SH, Yang DL, Wei J, Yan C, Jian XG, J. Membr. Sci., 279(1-2), 238 (2006)
Han RL, Zhang SH, Hu LJ, Guan SS, Jian XG, J. Membr. Sci., 370(1-2), 91 (2011)
Fujiwara N, Matsuyama H, Desalination, 227(1-3), 295 (2008)
Kedem O, Katchalsky A, Trans Faraday Soc., 59, 1918 (1963)
Pontie M, Buisson H, Diawara CK, Essis-Tome H, Desalination, 157(1-3), 127 (2003)
Hidalgo AM, Leon G, Gomez M, Murcia MD, Gomez E, Gomez JL, Desalination, 315, 70 (2013)
Spiegler KS, Kedem O, Desalination, 1, 311 (1966)
Schaep J, Van der Bruggen B, Vandecasteele C, Wilms D, Sep. Purif. Technol., 14(1-3), 155 (1998)
Geise GM, Park HB, Sagle AC, Freeman BD, McGrath JE, J. Membr. Sci., 369(1-2), 130 (2011)
Lonsdale HK, Merten U, Riley RL, J. Appl. Polym. Sci., 9, 1341 (1965)
Paul DR, J. Membr. Sci., 241(2), 371 (2004)
Matsuura T, Synthetic Membranes and Membrane Separation Processes, CRC Press (1993). (1993)
Misdan N, Lau WJ, Ismail AF, Matsuura T, Rana D, Desalination, 344, 198 (2014)
Lau WJ, Ismail AF, Desalination, 245, 198 (2009)
Ong CS, Lau WJ, Ismail AF, Desalin. Water Treat., 50, 245 (2012)
Ismail AF, Lau WJ, Desalin. Water Treat., 6, 281 (2009)
Mehdizadeh H, Dickson JM, Eriksson PK, Ind. Eng. Chem. Res., 28, 814 (1989)
Sharma RR, Chellam S, Environ. Sci. Technol., 39, 5022 (2005)
Kulisa K, Chem. Anal. (Warsaw), 49, 665 (2004)
Vrijenhoek EM, Hong S, Elimelech M, J. Membr. Sci., 188(1), 115 (2001)
Misdan N, Lau WJ, Ismail AF, Matsuura T, Desalination, 329, 9 (2013)
Liang CZ, Sun SP, Li FY, Ong YK, Chung TS, J. Membr. Sci., 469, 306 (2014)
Ong YK, Li FY, Sun SP, Zhao BW, Liang CZ, Chung TS, Chem. Eng. Sci., 114, 51 (2014)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로