ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received April 18, 2014
Accepted September 11, 2014
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Mesoporous silica with monodispersed pores synthesized from the controlled self-assembly of silica nanoparticles

1Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China 2University of Chinese Academy of Sciences, Beijing 100049, China
wangsd@dicp.ac.cn
Korean Journal of Chemical Engineering, May 2015, 32(5), 852-859(8), 10.1007/s11814-014-0270-5
downloadDownload PDF

Abstract

Silica nanoparticles with different sizes (ranging from 10 nm to 104 nm) and size distributions were synthesized by semi-batch and semi-batch/batch methods of the Stober process. Then the amorphous silica with different surface areas (ranging from 30m2/g to 400m2/g) and pores (ranging from 3 nm to 33 nm) were obtained by various aging treatments and drying methods of the synthesized colloidal silica sol. The aging treatment resulted in the monodispersed_x000D_ pore distribution and decreased BET surface area of silica. The high-humidity drying method led to the mesoporous silica with uniform pores and decreased small pores. As the silica was obtained by the arrangement of silica nanoparticles, the pore diameter and pore distribution of mesoporous silica were directly related to the size and distribution of nanoparticles. Furthermore, this study offered a new thought for the synthesis of other mesoporous materials with uniform pore distributions.

References

Hrubesh LW, Coronado PR, Satcher JH, J. Non-Cryst. Solids, 285, 328 (2001)
Morris CA, Anderson ML, Stroud RM, Merzbacher CI, Rolison DR, Science, 284(5414), 622 (1999)
Smirnova I, Suttiruengwong S, Arlt W, J. Non-Cryst. Solids, 350, 54 (2004)
Stober W, Fink A, Bohn E, J. Colloid Interface Sci., 26, 62 (1968)
Huang Y, Pemberton JE, Colloids Surf., A, 377, 76 (2011)
Lei ZB, Xiao Y, Dang LQ, Lu M, You WS, Micropor. Mesopor. Mater., 96, 127 (2006)
Lindberg R, Sjoblom J, Sundholm G, Colloids Surf., A, 99, 79 (1995)
Scott Fogler H, Elements of Chemical Reaction Engineering, Prentice-Hall of India (2004)
Kim KD, Kim HT, J. Sol-Gel Sci. Technol., 25, 183 (2002)
Hartlen KD, Athanasopoulos APT, Kitaev V, Langmuir, 24(5), 1714 (2008)
Watanabe R, Yokoi T, Kobayashi E, Otsuka Y, Shimojima A, Okubo T, Tatsumi T, J. Colloid Interface Sci., 360(1), 1 (2011)
Tang JW, Zhou XF, Zhao DY, Lu GQ, Zou J, Yu CZ, J. Am. Chem. Soc., 129(29), 9044 (2007)
Kuroda Y, Yamauchi Y, Kuroda K, Chem. Commun., 46, 1827 (2010)
Johnson SA, Ollivier PJ, Mallouk TE, Science, 283(5404), 963 (1999)
Nozawa K, Gailhanou H, Raison L, Panizza P, Ushiki H, Sellier E, Delville JP, Delville MH, Langmuir, 21(4), 1516 (2005)
Bogush GH, Zukoski CF, J. Colloid Interface Sci., 142, 1 (1991)
LaMer VK, Dinegar RH, J. Am. Chem. Soc., 72, 4847 (1950)
Green DL, Lin JS, Lam YF, Hu MZC, Schaefer DW, Harris MT, J. Colloid Interface Sci., 266(2), 346 (2003)
Matsoukas T, Gulari E, J. Colloid Interface Sci., 124, 252 (1988)
Brinker CJ, Scherer GW, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Academic Press, Boston (1990)
Kurumada KI, Nakabayashi H, Murataki T, Tanigaki M, Colloids Surf., A, 139, 163 (1998)
Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T, Pure Appl. Chem., 57, 603 (1985)
Lee S, Cho IS, Lee JH, Kim DH, Kim DW, Kim JY, Shin H, Lee JK, Jung HS, Park NG, Kim K, Ko MJ, Hong KS, Chem. Mater., 22, 1958 (2010)
Wang JZ, Sugawara-Narutaki A, Fukao M, Yokoi T, Shimojima A, Okubo T, ACS Appl. Mater. Interfaces, 3, 1538 (2011)
Wang C, Zhang YH, Dong L, Fu LM, Bai YB, Li TJ, Xu JG, Wei Y, Chem. Mater., 12, 3662 (2000)
Micheletto R, Fukuda H, Ohtsu M, Langmuir, 11(9), 3333 (1995)
Huang Y, Pemberton JE, Colloids Surf., A, 360, 175 (2010)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로