Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received March 26, 2014
Accepted September 21, 2014
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Carbide-derived carbon/sulfur composite cathode for multi-layer separator assembled Li-S battery
Sun-Hwa Yeon1†
Wook Ahn1 2
Kyoung-Hee Shin1
Chang-Soo Jin1
Kyu-Nam Jung1
Jae-Deok Jeon1
Sungnam Lim3
Youngchul Kim4
1Korea Institute of Energy Research, 102, Gajeong-ro, Yuseong-gu, Daejeon 305-343, Korea 2Department of Materials Science & Engineering, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul 120-749, Korea 3Department of Chemical and Biomolecular Engineering, KAIST, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea 4Agency for Defense Development, Yuseong-gu, P. O. Box 35-4, Daejeon 305-600, Korea
Korean Journal of Chemical Engineering, May 2015, 32(5), 867-873(7), 10.1007/s11814-014-0278-x
Download PDF
Abstract
To improve the electrochemical performance of Li-S rechargeable batteries, tunable porous carbon materials, which are known as carbide-derived carbons (CDCs), are employed as adsorbents and conductive matrices for the cathodic sulfur materials. A new assembly for Li-S cells was developed by introducing multi-layer membranes as separators. The use of the multi-layer membranes enables the minimization of the shuttle effect by expanding the distance between the separators and blocking the penetration of the polysulfide. The best discharge capacity and cycle life were obtained with ten layers of PP membrane in a sulfur-CDC@1200 composite cathode, resulting in a discharge capacity of 670 mA h g-1 and a minimal gap in the charge-discharge capacity during cell cycling.
References
Kolosnitsyn VS, Karaseva EV, Russian J. Electrochem., 44, 506 (2008)
Li X, Cao Y, Qi W, Saraf LV, Xiao J, Nie Z, Mietek J, Zhang JG, Schwenzer B, Liu J, J. Mater. Chem., 21, 16603 (2011)
Ji XL, Lee KT, Nazar LF, Nat. Mater., 8(6), 500 (2009)
Ji L, Rao M, Aloni S, Wang L, Cairns EJ, Zhang Y, Energy Environ. Sci., 4, 5053 (2013)
Wang H, Yang Y, Liang Y, Robinson JT, Li Y, Jackson A, Cui Y, Dai H, Nano Lett., 11, 2644 (2011)
Wei S, Zhang H, Huang Y, Wang W, Xia Y, Yu Z, Energy Environ. Sci., 4, 736 (2011)
Liang C, Dudney NJ, Howe JY, Chem. Mater., 21, 4724 (2009)
Lai C, Gao XP, Zhang B, Yan TY, Zhou Z, J. Phys. Chem. C, 113, 4712 (2009)
Yeon SH, Jung KN, Yoon S, Shin KH, Jin CS, Kim Y, J. Appl. Electrochem., 43(3), 245 (2013)
Dash R, Chmiola J, Yushin G, Gogotsi Y, Laudisio G, Singer J, Fischer J, Kucheyev S, Carbon, 44, 2489 (2006)
Ji X, Nazar LF, J. Mater. Chem., 20, 9821 (2010)
Scrosati B, Garche J, J. Power Sources, 195(9), 2419 (2010)
Gao J, Lowe MA, Kiya Y, Abruna HD, J. Phys. Chem. C, 115, 25132 (2011)
Zheng G, Yang Y, Cha JJ, Hong SS, Cui Y, Nano Lett., 11, 4462 (2011)
Sing K, Colloids Surf., A: Physicochem. Eng. Aspects, 187, 3 (2001)
Aggarwal RL, Farrar LW, Polla DL, J. Raman. Spectrosc., 42, 461 (2010)
Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL, Science, 313, 1760 (2006)
Fantauzzi M, Atzei D, Elsener B, Lattanzi P, Rossi A, Surf. Interface Anal., 38, 922 (2006)
Peisert H, Chass T, Streubel P, Meisel A, Szargan R, J. Electron. Spectrosc. Relat. Phenom., 68, 321 (1994)
Marsh H, Sherwood PMA, Augustyn D, Fuel, 55, 97 (1976)
Liang XA, Wen ZY, Liu Y, Zhang H, Huang LZ, Jin J, J. Power Sources, 196(7), 3655 (2011)
Liang X, Liu Y, Wen ZY, Huang LZ, Wang XY, Zhang H, J. Power Sources, 196(16), 6951 (2011)
Mikhaylik YV, Patent, EP1726052 B8 (2012.4.18).
Mikhaylik YV, Akridge JR, J. Electrochem. Soc., 151, 1969 (2004)
Li X, Cao Y, Qi W, Saraf LV, Xiao J, Nie Z, Mietek J, Zhang JG, Schwenzer B, Liu J, J. Mater. Chem., 21, 16603 (2011)
Ji XL, Lee KT, Nazar LF, Nat. Mater., 8(6), 500 (2009)
Ji L, Rao M, Aloni S, Wang L, Cairns EJ, Zhang Y, Energy Environ. Sci., 4, 5053 (2013)
Wang H, Yang Y, Liang Y, Robinson JT, Li Y, Jackson A, Cui Y, Dai H, Nano Lett., 11, 2644 (2011)
Wei S, Zhang H, Huang Y, Wang W, Xia Y, Yu Z, Energy Environ. Sci., 4, 736 (2011)
Liang C, Dudney NJ, Howe JY, Chem. Mater., 21, 4724 (2009)
Lai C, Gao XP, Zhang B, Yan TY, Zhou Z, J. Phys. Chem. C, 113, 4712 (2009)
Yeon SH, Jung KN, Yoon S, Shin KH, Jin CS, Kim Y, J. Appl. Electrochem., 43(3), 245 (2013)
Dash R, Chmiola J, Yushin G, Gogotsi Y, Laudisio G, Singer J, Fischer J, Kucheyev S, Carbon, 44, 2489 (2006)
Ji X, Nazar LF, J. Mater. Chem., 20, 9821 (2010)
Scrosati B, Garche J, J. Power Sources, 195(9), 2419 (2010)
Gao J, Lowe MA, Kiya Y, Abruna HD, J. Phys. Chem. C, 115, 25132 (2011)
Zheng G, Yang Y, Cha JJ, Hong SS, Cui Y, Nano Lett., 11, 4462 (2011)
Sing K, Colloids Surf., A: Physicochem. Eng. Aspects, 187, 3 (2001)
Aggarwal RL, Farrar LW, Polla DL, J. Raman. Spectrosc., 42, 461 (2010)
Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL, Science, 313, 1760 (2006)
Fantauzzi M, Atzei D, Elsener B, Lattanzi P, Rossi A, Surf. Interface Anal., 38, 922 (2006)
Peisert H, Chass T, Streubel P, Meisel A, Szargan R, J. Electron. Spectrosc. Relat. Phenom., 68, 321 (1994)
Marsh H, Sherwood PMA, Augustyn D, Fuel, 55, 97 (1976)
Liang XA, Wen ZY, Liu Y, Zhang H, Huang LZ, Jin J, J. Power Sources, 196(7), 3655 (2011)
Liang X, Liu Y, Wen ZY, Huang LZ, Wang XY, Zhang H, J. Power Sources, 196(16), 6951 (2011)
Mikhaylik YV, Patent, EP1726052 B8 (2012.4.18).
Mikhaylik YV, Akridge JR, J. Electrochem. Soc., 151, 1969 (2004)